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Bedrock geology and economic potential of the
Archean Mary River group, northern Baffin
Island, Nunavut

S.M. Johns and M.D. Young

Johns, S.M. and Young, M.D., 2006: Bedrock geology and economic potential of the Archean Mary River
group, northern Baffin Island, Nunavut; Geological Survey of Canada, Current Research 2006-C5, 13 p.

Abstract: Bedrock mapping and prospecting in northern Baffin Island, including parts of NTS map
areas 37 E, F, G, and H, has redefined interpretations of the stratigraphy and structure of the Archean Mary
River group, surrounding gneiss, and intrusions. In the study area, the Mary River group includes psammite
and sedimentary migmatite, amphibolite, ±psammite and sedimentary migmatite, Algoma-type silicate-
and oxide-facies iron-formation, ±dacite, ±psammite, and quartzite, intruded by late ultramafic and
gabbroic sills and dykes. Three episodes of penetrative deformation are recognized and Archean and
Proterozoic rocks underwent amphibolite- to granulite-facies regional metamorphism during the ca. 1.8 Ga
Hudsonian Orogeny. The youngest regional event, defined as D3, folded metamorphic isograds and pre-D3
fabrics. New economic mineral prospects include 20 m thick magnetite beds within iron-formation, and vis-
ible gold and molybdenum in quartz veins. The area also has potential for Ni-Cu-PGE magmatic sulphide
mineralization in mafic and ultramafic sills.
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Résumé : La cartographie du substratum rocheux et les travaux de prospection dans le nord de l’île de
Baffin, notamment dans les régions couvertes par des parties des cartes 37 E, F, G et H du SNRC, ont permis
d’élaborer de nouvelles interprétations de la stratigraphie et de la structure du groupe de Mary River de
l’Archéen, ainsi que des gneiss et des intrusions avoisinants. Dans la région d’étude, le groupe de Mary
River se présente comme suit : psammite et migmatite sédimentaire, amphibolite, ± psammite et migmatite
sédimentaire, formation de fer de type Algoma à faciès silicaté et oxydé, ± dacite, ± psammite et quartzite.
Toutes les unités précédentes sont recoupées par des filons-couches et des dykes ultramafiques et
gabbroïques de formation tardive. Trois épisodes de déformation pénétrative sont distingués et les roches de
l’Archéen et du Protérozoïque ont subi un métamorphisme régional allant du faciès des amphibolites au
faciès des granulites pendant l’orogenèse hudsonienne, à 1,8 Ga environ. L’événement régional le plus
récent, attribué à D3, a plissé les isogrades du métamorphisme et les fabriques antérieures à D3. De nou-
veaux prospects de minéralisations d’intérêt comprennent des lits de magnétite de 20 m d’épaisseur dans la
formation de fer, ainsi que de l’or visible et du molybdène dans des filons de quartz. La région recèle en
outre un certain potentiel quant aux minéralisations de sulfures magmatiques de Ni-Cu-ÉGP dans des
filons-couches mafiques et ultramafiques.



INTRODUCTION

This report outlines preliminary field results from the
2005 season for the bedrock component of the three-year
North Baffin Project, a collaborative effort of the Canada-
Nunavut Geoscience Office and the Geological Survey of
Canada. The primary objective of this project is surficial
mapping and till sampling of NTS map areas 37 E, F, G, and
H, northern Baffin Island, Nunavut (Fig. 1), with correspond-
ing targeted bedrock mapping and prospecting of selected
areas (Young et al., 2004). Surficial geology was discussed
by Little et al. (2004) and Utting et al. (2006).

This project builds on previous regional bedrock mapping
projects throughout the northern Rae Domain of the western
Churchill Province: the Clyde-Cockburn Land area,
north-central Baffin Island (Jackson, 2000, 1996; Jackson
and Berman, 2000), the Eqe Bay area to the south (Bethune
and Scammell, 1993, 2003a, b; Scammell and Bethune;
1995), and the Committee Bay region to the southwest
(Frisch, 1982; Sanborn-Barrie et al., 2003; Skulski et al.,
2003; Carson et al., 2004; Berman et al., 2005) (Fig. 1). The
purposes of the bedrock component of the North Baffin
Project are to discover prospective areas of economic mineral
potential, collect rock samples for assay analysis supporting
the drift prospecting component (Utting et al., 2006), and to
update the stratigraphic, metamorphic, structural, geochemi-
cal, and geochronological knowledge for the Mary River
group on northern Baffin Island.

GEOLOGICAL SETTING

The study area occurs in the ca. 3.0–2.5 Ga Committee
belt of the western Churchill Province (Jackson and Berman,
2000). The Committee belt is part of the northern Rae
Domain (Hoffman, 1988), and is characterized by felsic
plutonism and greenschist- to upper-amphibolite-facies
supracrustal (greenstone) belts (Jackson and Berman, 2000).
These supracrustal belts are discontinuous, trend northeast
(Jackson and Berman, 2000; Skulski et al., 2003), and
extend from Baker Lake in southern Nunavut to northwest
Greenland (Fig. 1). Correlative sequences include the
Woodburn Lake, Prince Albert, and Mary River groups of the
Rae domain, and the Inglefield Bredning–Melville Bugt
region of northwestern Greenland (Fig. 1) (Frisch, 1982;
Schau and Ashton, 1988; Zaleski et al., 1999, 2001; Jackson
and Berman, 2000). These ca. 2.74–2.68 Ga Neoarchean
supracrustal sequences were deposited on ca. 3.0–2.8 Ga
Mesoarchean plutonic crust (Jackson et al., 1990; Jackson
and Berman, 2000; Zaleski et al., 2000; Wodicka et al., 2002;
Bethune and Scammell, 2003a; Pehrsson et al., 2005). The
Mary River group is bordered to the southeast by the inferred
crustal-scale Isortoq fault zone (Fig. 2) (Jackson, 2000;
Bethune and Scammell, 2003b) and locally overlain by
Paleoproterozoic supracrustal sequences, which extend from

Melville Peninsula (Penrhyn Group) across Baffin Island
(Piling Group) to west Greenland (Karrat Group) (Fig. 1)
(Jackson and Taylor 1972; Henderson and Tippett, 1980;
Hoffman, 1988, 1990; Henderson et al., 1989; Jackson and
Berman 2000).

The Mary River group, exposed on northern Baffin
Island, comprises two greenstone belts in the Eqe Bay area
(Fig. 1), the Isortoq and Eqe Bay belts (Bethune and
Scammell, 1993, 2003a, b; Scammell and Bethune, 1995).
Primary stratigraphic relationships are well exposed within
the predominantly greenschist-facies Eqe Bay belt. The
stratigraphic sequence of the Eqe Bay belt, from base to top,
is characterized by mafic to intermediate volcanic rocks,
iron-formation, subordinate quartzite, intermediate to felsic
volcanic rocks, and overlain by conglomerate and a
greywacke-turbidite sequence (Bethune and Scammell,
2003a). This assemblage is interpreted to represent the for-
mation of a volcanic arc on thinned continental crust with
associated fumarolic activity forming iron-formation deposits
(Bethune and Scammell, 2003a). In contrast, the mafic volca-
nic sequences and associated ultramafic volcanic rocks of the
Woodburn Lake and Prince Albert groups are interpreted as
melting products of one or more mantle plumes in a continen-
tal-rift setting (Zaleski et al., 1999, 2001; Skulski et al.,
2003). Schau and Ashton (1988) suggested an additional
interpretation for the Prince Albert Group, where the interme-
diate volcanic rocks formed within an ensialic basin or during
crustal rifting above a linear mantle upwelling or plume,
wherein the mafic volcanic rocks formed at the basin margins
and the felsic volcanic rocks formed by partial melting of the
lower crust.

The rocks of the Woodburn Lake, Prince Albert, and
Mary River groups have been affected by several episodes of
Archean and Proterozoic deformation and metamorphism.
Evidence for three Archean metamorphic events is thought to
be preserved in the Eqe Bay greenstone belt (Bethune and
Scammell, 2003b). The first event is based on structural and
metamorphic complexity observed in the gneiss complex
which is absent from, and likely predates, the ca. 2780–2770 Ma
orthogneiss and ca. less than 2770 Ma supracrustal Mary
River group. The second event involved folding of volcanic
rocks and iron-formation of the Mary River group, which is
inferred to have occurred before the eruption of ca.
2740–2725 Ma intermediate to felsic volcanic rocks. The
third is represented by low- to medium-pressure metamor-
phism of the entire Eqe Bay belt, which postdates turbidite
sedimentation and is coeval with ca. 2700–2690 Ma
peraluminous plutonism. Geochronology from the Commit-
tee Bay belt indicates that the northern Rae Domain experi-
enced a metamorphic event at ca. 2.35 Ga (Carson et al.,
2004; Berman et al., 2005). Structural studies of the Woodburn
Lake Group also identified evidence for Archean deformation
events (Pehrsson et al., 2004). Paleoproterozoic deformation
within the northern Rae Domain was widespread during the
Hudsonian Orogeny at ca. 1.8 Ga, and resulted in the devel-
opment of a strong northeast-southwest structural grain in the
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northern Rae Domain, and produced large-scale, tight north-
west-vergent folds and a fold-thrust belt in the Committee
Bay and Woodburn Lake regions (Sanborn-Barrie et al.,
2003; Carson et al., 2004; Pehrsson et al., 2004; Berman et al.,
2005). The Hudsonian event also resulted in northwest directed
thrusting and activation of the Isortoq fault zone on Baffin
Island, culminating in granulite-grade metamorphism, anatexis,
and local plutonism within the footwall of the fault zone. The
region of granulite-facies rocks is known as the Dexterity
granulite belt (Fig. 1, 2; Jackson (2000) Jackson and Berman

(2000)). The granulite-facies metamorphism is dated at 1825
Ma (Bethune and Scammell, 2003b). Within the Mary River
group, the northeast-trending folds have been refolded by
east-trending, upright folds, producing a dome-and-basin
geometry in the study area (Young et al., 2004). Local
northeast- and northwest-trending crenulations also occur
throughout the study area. The crenulation fabrics are infer-
red to be related to superposed folds which produce the
dome-and-basin folding in Piling Group rocks (Scott et al.,
2003).
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QUARTZOFELDSPATHIC GNEISS

Quartzofeldspathic gneiss, inferred to be derived from
granitoid intrusions, forms irregular bodies and underlies
most of NTS map areas 37 E and 37 H. Gneiss units are
banded and predominantly represented by granodiorite com-
positions, with granodiorite-granite, granite-granodiorite,

granodiorite-quartz monzonite, diorite-quartz diorite, and
syenogranite subtypes. Biotite schlieren and amphibolite
xenoliths occur locally. Several samples of gneiss were col-
lected for geochronology to determine if some of these gneiss
units represent basement to the Mary River group.
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Previous studies on northern Baffin Island have identified
the presence of extensive tracts of Mesoarchean banded
orthogneiss, thought to form the basement to the Neoarchean
Mary River group (Jackson et al., 1990; Wodicka et al., 2002;
Bethune and Scammell, 2003a). In NTS map area 37 G,
tonalitic gneiss yielded an igneous U-Pb zircon age of 2851
+20/-17 Ma (Jackson et al., 1990). In the Eqe Bay area, a
tonalitic cobble from an intraformational conglomerate
yielded a U-Pb zircon age of 2843 ± 2 Ma (Bethune and
Scammell, 2003a). Biotite monzogranite, in a domal inlier to
the Piling Group, yielded a U-Pb zircon age of 2827 +8/-7 Ma
(Wodicka et al., 2002). These age dates indicate the presence
of Mesoarchean crust, which may occur as basement to an
unconformably overlying supracrustal sequence, such as the
Mary River group.

MARY RIVER GROUP

The Mary River group supracrustal rocks are gently dip-
ping, and are best-exposed and -preserved in cliff sections
and as tors in the central part of NTS map area 37 E, northwest
of the Barnes Ice Cap along the Isortoq River, and northeast
of the Barnes Ice Cap between Conn Lake and Bieler Lake
(Fig. 2). The surrounding parts of NTS map areas 37 E and 37
H are covered by extensive, boulder-rich, glacial till deposits.
In NTS map areas 37 G, the rocks are steeply dipping and are
best exposed in the northern, west-central, and southern parts
of the map area (Fig. 2; Young et al., 2004). Regional correla-
tions and previous mapping in NTS map area 37 G during
2003 characterized the stratigraphy of the western part of the
Mary River group (Fig. 3) (Young et al., 2004). The general-
ized stratigraphic order for 37 G, from base to top, is as
follows: psammite, amphibolite, Algoma-type oxide- and
silicate-facies iron-formation, quartzite, and interbedded
ultramafic and intermediate volcanic rocks (Young et al.,
2004).

The stratigraphic sequence in the northwest map area
(NTS 37 G) comprises predominately mafic, ultramafic, and
intermediate volcanic rocks and subordinate clastic meta-
sedimentary rocks; whereas, towards the southeastern part of
the map area (NTS 37 E and H), there is a gradation to a more
metasedimentary-dominated sequence. Throughout the east-
ern map area, the supracrustal rocks are gently dipping, and
best exposed in cliff sections, thus hindering representation
on detailed plan maps. Although the entire stratigraphic sec-
tion is rarely preserved in any one area and is cut by abundant
late felsic intrusions, the stratigraphic order in the eastern
map area (NTS 37 E and H) has been reconstructed and based
on the authors’ preliminary understanding, is as follows:
psammite and sedimentary migmatite, amphibolite±psam-
mite and sedimentary migmatite, Algoma-type silicate- and
oxide-facies iron-formation±dacite±psammite, and quartz-
ite, intruded by late ultramafic and gabbroic sills and dykes
(Fig. 3). The thickness of each of the units varies considerably
throughout the study area. Of note, the reconstructed

stratigraphic successions of the Mary River group in the study
area are comparable to the rocks described in the Woodburn
Lake Group and the Prince Albert Group (Zaleski et al., 2000;
Sanborn-Barrie et al., 2003; Skulski et al., 2003; Pehrsson et
al., 2004). Figure 3 shows the relationship between these
three groups, covering a distance of over 1000 km. This sec-
tion describes the lithological units exposed in NTS map
areas 37 E and H.

Psammite and sedimentary migmatite

Psammite and sedimentary migmatite represent the low-
est preserved lithological unit of the Mary River group,
although the basal contact is obscured by late felsic intrusions.
The thickness of this unit is uncertain due to the obscured
basal contact as noted. This unit displays schistosity defined
by coarse-grained biotite and is commonly migmatized. The
outcrops weather brown and are occasionally rust stained due
to disseminated pyrite.

Amphibolite

Amphibolite is a common marker unit within the Mary
River group and is present within the majority of exposed sec-
tions. It is generally in sharp contact with the basal psammite
and sedimentary migmatite, but occasionally displays some
gradation between units. Most exposures are massive and
medium grained, although several show distinctive layering
defined by more plagioclase-rich layers. The amphibolite
unit ranges from approximately 1 m to at least 10 m in thick-
ness, with the thickest units observed between Conn Lake and
Bieler Lake (Fig. 2).

Iron-formation

Oxide-, silicate-, and silicate-oxide-facies banded
iron-formation units occur above the amphibolite unit.
Oxide-facies iron-formation varies from lean, banded mag-
netite-chert with millimetre- to centimetre-thick beds of mag-
netite, to massive magnetite with beds up to 20 m thick. The
oxide-facies banded iron-formation is composed of fine-
grained grey or bluish specular hematite and recrystallized
quartz. Silicate-facies iron-formation is commonly found in
association with the oxide facies and occurs in beds 20 m or
less thick, but also occurs on its own as single beds 5 m or less
thick. The silicate-facies exposures are rusty to gossanous,
containing abundant garnet porphyroblasts. Biotite and
sillimanite define the schistosity. Magnetite Hill (Fig. 2) rep-
resents an example of the association between silicate- and
oxide-facies iron-formation (Fig. 4a, b). The combined
silicate-oxide-facies iron-formation is typically rusty to
gossanous with disseminated pyrite and thin, magnetite-
rich layers. Exposures of the iron-formation are commonly 5
m or less thick. Psammite and sedimentary migmatite units
are occasionally associated with the iron-formation, and are
about 5–20 m thick.
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Dacite

Dacite is rare within NTS map areas 37 E and H, and occurs
in thin units 5 m or less above or below the silicate-facies
iron-formation. These intermediate volcanic rocks are
fine-grained and weather bluish-grey in outcrop. Dacite in the
Magnetite Hill area has been sampled for U-Pb age dating to
provide a direct age of volcanism.

Quartzite

Quartzite was observed at the eastern edge of NTS map
area 37 G and in the centre of NTS map area 37 E near Beacon
Hill and the Freshney River (Fig. 2). The thickness of this unit
shows extreme variation ranging from several metres up to
500 m at Beacon Hill (Fig. 4c). Quartzitic monolithic con-
glomerate was also observed within the quartzite unit in the
Freshney River area (Fig. 4d). Quartzite locally contains

differing amounts of muscovite±biotite±sillimanite±fu-
chsite±magnetite±cordierite±orthopyroxene±garnet. Where
contacts are observed, quartzite and occasionally psammite
typically overlie iron-formation. Quartzite from Beacon Hill
and from the Freshney River area has been sampled for
geochronology in order to determine the provenance and
maximum age of sedimentation.

(?)Archean carbonate and marble

Carbonate and marble was observed in close association
with the Mary River group in outcrop near the Freshney River
(Fig. 4e), and as in situ boulders near Beacon Hill. Zaleski et
al. (2000) established that there are marble units interbedded
with Archean quartzite units within the Woodburn Group;
however, samples of adjacent Mary River group quartzite,
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a) b)b)

c)c) d)d)

e)e) f)f)

Figure 4. a) Silicate-facies iron-formation (foreground) and oxide-facies iron-formation (background), Magnetite Hill.
View to the north; person is 1.7 m tall. b) Laminated magnetite-quartz beds, oxide-facies iron-formation, Magnetite Hill.
Finger is 1.8 cm wide. c) Quartzite beds, Beacon Hill. Beacon Hill is about 750 m long and about 150 m high.
d) Quartzitic monolithic conglomerate with minor fuchsite, Freshney River area. Black outline shows flattened clast.
Hammer head is 14 cm long. e) Carbonate and marble (bottom) in contact with monzogranite (top), Freshney River
area. Lens cap, centre of photograph, is 50 mm wide. f) Tertiary limestone conglomerate filling fractures in
underlying gneiss approximately 5 km south of Rimrock Lake. Lens cap is 50 mm wide.



gneiss, and intrusive rocks from the Freshney River area were
obtained for geochronology in order to determine if these
marble units are part of the Mary River group stratigraphy.

Ultramafic intrusions

Ultramafic and gabbroic intrusions crosscut the sedimen-
tary rocks, iron-formation, and amphibolite of the Mary
River group throughout NTS map areas 37 E, H, and G. These
intrusions weather dark green to brown and represent
serpentinized peridotite, with large phenocrysts of pyroxene
locally preserved. The intrusions form small sills and dykes
up to a few tens of metres thick. Some of these intrusions may
have inflated the supracrustal sequence (Young et al., 2004).

FELSIC INTRUSIONS

Felsic plutonic rocks are spatially associated with supra-
crustal rocks of the Mary River group in NTS map area 37 E,
where foliated porphyritic monzogranite represents the most
abundant type of felsic intrusion. Charnockite, tonalite, and
tonalite-granodiorite intrusions containing biotite schlieren
and amphibolite xenoliths also occur. The porphyritic
monzogranitic intrusions are believed to be related to the ca.
2709 Ma porphyritic (K-feldspar phyric) monzogranite units
of NTS map area 37 G, that were observed by Jackson (2000).
Both types of intrusions in NTS map areas 37 E and 37 G are
light pinkish-grey, medium grained, contain K-feldspar
megacrysts, and are elongated parallel to local foliations. One
felsic intrusion has been sampled for geochronology to
constrain the age of the Mary River group.

FRANKLIN DYKES

Several north-trending vertical diabase dykes were
observed in the study area. These undeformed and
unmetamorphosed intrusions are about 10–20 m thick and are
inferred to be part of the 723 +4/-2 Ma Franklin swarm
(Heaman et al., 1992), based on rock type and dyke
orientation.

TERTIARY CONGLOMERATE

A single outcrop of buff to dark-brown limestone con-
glomerate was observed in NTS map area 37 E on the top of a
tor south of Rimrock Lake, about 26 km northwest of the
Barnes Ice Cap (Fig. 2). The conglomerate fills fractures in
the underlying gneiss units, representing a nonconformity
(Fig. 4f). This exposure was previously observed by Andrews
et al. (1972) and named “Rimrock Bed”. Palynology studies
by Andrews et al. (1972) have determined that these

sedimentary rocks are Paleocene (68–58 Ma) and were
deposited during a warm climate in a fresh-water swamp or
marginal marine marsh.

DEFORMATION

Rocks of the Mary River group and intervening plutonic
rocks have been affected by at least three regionally penetra-
tive episodes of deformation. The first episode (D1) is not
observed in the southeastern part of the map area (NTS 37 E
and southern 37 H) as a result of strong overprinting of the
two subsequent generations of structures. In the northern
parts of NTS map area 37 G, D1 is characterized by variably
developed, bedding-parallel foliations (S1), distinguished
from S2 only in the hinge zones of some F2 folds (Young et
al., 2004).

The second generation of structures, and earliest recog-
nizable structures in the southeastern map area (all of map
areas 37 E, F, and southern 37 H), comprise northwest-
verging, south-plunging folds and axial-planar foliations.
Well developed gneissic layering in all rock types is
attributed to D2. The metamorphic grade and intensity of
gneissosity increases approaching the Isortoq fault zone
which is interpreted to have formed during D2 (Fig. 2).
Discrete structures related to the Isortoq fault zone were not
directly observed in the study area, although well developed
shear zones and associated fabric elements are documented to
the south in the Eqe Bay region (Fig. 1; Bethune and
Scammell (2003b)). The Isortoq fault zone is well defined,
however, by the extreme contrast in magnetic susceptibilities
of the rocks in the hanging wall (greenschist facies) and
footwall (granulite facies) (Fig. 5).

The predominant mappable structures in the southern por-
tions of the study area (all of NTS map areas 37 E, F, and
southern 37 H) are attributed to D3 deformation. D3 structures
include steeply dipping, east-trending, strongly developed
transposition fabrics and large- to small-scale folding of D2
folds resulting in complex fold interference map patterns
(Fig. 6). This generation of structures decreases in intensity to
the north and to the south such that rocks in the Long Lake
area (Fig. 2, 5) and in the Eqe Bay area only record weakly
developed east-trending crenulation cleavage (Fig. 2, 5). This
domain of D3 deformation is associated with aeromagne-
tically defined, east-trending dextral transverse faults (Fig. 5).
In the Committee Bay belt, widely spaced, east-trending
dextral fault zones are younger than 1.8 Ga (Fig. 2;
Sanborn-Barrie et al. (2003)); however, no associated ductile
fabric elements outside the fault zones are documented.
Whether this episode of deformation on northern Baffin
Island reflects pure contraction or transpression is uncertain,
but the deformation must have occurred after ca. 1825 Ma,
the youngest age of metamorphism associated with D2 in the
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footwall (northwest side) of the Isortoq fault zone, and most
likely prior to regional exhumation in response to ca. 1.8 Ga
tectonism (Bethune and Scammell, 2003b).

METAMORPHISM

Rocks of the Mary River group in NTS map areas 37 E and
H underwent high-temperature, amphibolite- to granulite-
facies regional metamorphism during the Hudsonian
Orogeny. Quartzite and psammite and sedimentary
migmatite of the amphibolite-facies contain the assemblage:
sillimanite+garnet±cordierite±muscovite; and those of the
granulite facies contain the assemblage: cordierite+gar-
net+K-feldspar+sillimanite. Several charnockite felsic
intrusions, interpreted to represent granulite-facies granitic
rocks, contain the mineral assemblage: orthopyroxene+horn-
blende+magnetite.

The northeast-trending Isortoq fault zone is a prominent
aeromagnetic feature (Fig. 5) within the map area and was
previously delineated by a 100 km wide belt of granulite-
facies rocks, known as the Dexterity granulite belt (Fig. 1;
Jackson (2000); Jackson and Berman (2000); Bethune and
Scammell (2003b)). Several traverses were conducted across
the Isortoq fault zone and the Dexterity granulite belt in NTS
map area 37 E; however, there is no sharp surface expression
of the fault, likely a result of overprinting D3 deformation.
The Dexterity granulite belt is discontinuous and folded in its
northern reaches as shown by the map pattern of the orthopyr-
oxene-in isograd (Fig. 2). In addition, a zone with metamorphic
orthopyroxene occurs far to the east of the aeromagnetically
defined Isortoq fault and may reflect large-scale F3 fold inter-
ference (Fig. 5). In contrast, in the Eqe Bay area to the south, a
prominent metamorphic grade change is documented across
the southwest extent of the Isortoq fault zone, which passes
between the greenschist-amphibolite facies Eqe Bay belt and
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the amphibolite-granulite facies Isortoq belt (Bethune and
Scammell, 2003a). These belts are south of the southern limit
of the overprinting D3 deformation and therefore unaffected
by the fold interference that complicates the map pattern to
the north.

ECONOMIC GEOLOGY

Mineral prospecting during the 2005 field season focused
on the supracrustal Mary River group in NTS map areas 37 E,
H, and the eastern side of 37 G, as it is considered to hold ele-
vated potential for a variety of mineralization types including
iron ore, iron-formation-hosted gold, and Ni-Cu-PGE mag-
matic sulphide mineralization. Prospective areas were identi-
fied by traverses, detailed mapping, and assay sampling.
Forty-five assay samples were collected, seven of these sam-
ples will be analyzed for FeO by titration to determine
prospectivity for iron ore. Eighty-four samples were col-
lected for lithogeochemistry, including analyses for base

and precious metals. Lithogeochemistry samples include
50 plutonic rocks, 13 sedimentary rocks, and 21 volcanic
rocks.

Algoma-type iron-formation is common within Mary
River group exposures throughout NTS map area 37 E and
the eastern edge of NTS map area 37 G, and includes oxide-,
silicate- and silicate-oxide-facies iron-formation. The oxide-
facies iron-formation typically is composed of lean, banded
magnetite-chert or specular hematite-recrystallized quartz
layers (Fig. 7a). The most striking occurrence of oxide-facies
iron-formation is in the Magnetite Hill area (70.523ºN,
74.980ºW) (Fig. 2), where magnetite beds are up to 20 m
thick and remobilized iron forms magnetite veins (Fig. 7b).
Other prominent examples of oxide-facies iron-formation
exposures are located at 70.565ºN, 74.782ºW and 70.957ºN,
77.024ºW. Silicate-facies iron-formation exposures are rusty
to gossanous (Fig. 7c), and may contain disseminated pyrite
layers. Significant examples of silicate-facies iron-formation
occur in the Magnetite Hill area, at 70.442ºN, 73.483ºW;
70.559ºN, 75.507ºW; and 70.930ºN, 76.233ºW. Silicate-
oxide-facies iron-formation is also rusty to gossanous, but
contains thin magnetite-rich layers (Fig. 7d). A good example
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of silicate-oxide-facies iron-formation occurs at Magnetite
Hill; others are located at 70.547ºN, 75.542ºW and 70.482ºN,
73.349ºW. Visible gold and molybdenum were discovered in
quartz veins associated with gossanous iron-formation along
the eastern edge of NTS map area 37 G (70.920ºN, 77.405ºW).

Ultramafic and gabbroic sills commonly intrude the Mary
River group and locally contain the disseminated sulphide
minerals pyrite±chalcopyrite. Several large gabbroic
intrusions and dykes, located approximately 15 km south-
-southwest from the head of Royal Society Fiord (71.083ºN,
74.383ºW), contain a copper showing (malachite). Ultramafic
and gabbroic intrusions can be host to magmatic sulphide
deposits containing nickel–copper–platinum-group-element
(Ni-Cu-PGE) mineralization. The presence of a copper show-
ing in gabbroic intrusions of the Mary River group suggests
potential for elevated Ni and PGE concentrations and
Ni-Cu-PGE magmatic sulphide mineralization. Several
samples of these intrusions were collected for assay.
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