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Late Archean Biospheric Oxygenation
and Atmospheric Evolution
Alan J. Kaufman,1* David T. Johnston,1 James Farquhar,1 Andrew L. Masterson,1
Timothy W. Lyons,2 Steve Bates,2 Ariel D. Anbar,3,4 Gail L. Arnold,3 Jessica Garvin,5 Roger Buick5

High-resolution geochemical analyses of organic-rich shale and carbonate through the
2500 million-year-old Mount McRae Shale in the Hamersley Basin of northwestern Australia
record changes in both the oxidation state of the surface ocean and the atmospheric composition.
The Mount McRae record of sulfur isotopes captures the widespread and possibly permanent
activation of the oxidative sulfur cycle for perhaps the first time in Earth’s history. The correlation
of the time-series sulfur isotope signals in northwestern Australia with equivalent strata from
South Africa suggests that changes in the exogenic sulfur cycle recorded in marine sediments
were global in scope and were linked to atmospheric evolution. The data suggest that
oxygenation of the surface ocean preceded pervasive and persistent atmospheric oxygenation
by 50 million years or more.

The history of Earth-surface oxygenation
is written in the geological record of
redox-sensitive elements preserved in

ancient sediments. The discovery of large non–
mass-dependent (NMD) S isotope anomalies
in Archean and the earliest Paleoproterozoic
sediments are believed to record changes in
atmospheric O2 levels, as these result from
photochemical reactions in a low O2 atmosphere
(1–4). To document temporal changes in the
magnitude of these isotope excursions, we fo-
cused on high stratigraphic resolution analyses
of organic-rich shale and carbonate from a
recently drilled scientific core (5) through the
~2500 million-year-old Mount McRae Shale of
northwestern Australia. Previous studies of the
MountMcRae Shale identified abundant 2-ameth-
yl hopanoids (6), produced by cyanobacteria that
most likely generated O2, as well as eukaryotic
sterols (7), which are biomolecules that require
O2 for their synthesis (8). We investigated the
time-series history of elemental and isotope
variations through the succession and interpreted
the upper half of the formation as capturing the
oxygenation of the terminal Archean surface
ocean and biosphere, a result further supported
by a companion trace-metals study (9).

In the present study, a modified online com-
bustion method (5, 10) for rapid analysis of
whole-rock S and a high-precision fluorina-
tion technique for analysis of chemically ex-
tracted sulfide S were applied to samples from
the core. We used unprecedented, high-resolution
records (d34S, D33S, and D36S) in concert with

stratigraphic variations in elemental abundances
[weight percent (wt %) C and S] and 13C com-
positions of carbonate and organic matter to ad-
dress the cause(s) of fluctuation in NMD effects
preserved in these ancient sediments. These results
were compared to a previous study of the Mount
McRae Shale (11) and to new S isotope data
from the stratigraphically equivalent Gamohaan
and Kuruman Iron formations in South Africa
(12–14) to evaluate the spatial extent of the inter-
preted events.

The Mount McRae Shale core intersects
laminated and well-preserved sediments that
accumulated in a marine environment below
the wave base. A regional sequence analysis
(15) indicates the presence of two depositional
cycles; each sequence starts in carbonate or
siliciclastic turbidite or breccia and deepens
upwards to either pelagic shale or banded
iron-formation (Fig. 1). The succession has ex-
perienced only mild regional metamorphism
(prehnite-pumpellyite facies to <300°C) and
minimal deformation (gentle folding to dips
<5°) (16). Radiometric age constraints place the
Mount McRae Shale very near the Archean/
Proterozoic boundary (~2500 million years old)
(9) and just before the disappearance of large
NMD effects that are inferred to mark the rise in
atmospheric O2 (1–3, 17).

Geochemical data from the Mount McRae
Shale (Fig. 1) suggest a tight coupling between
environmental and biological signals, with a
substantial transition recorded at ~153 m in the
core. Acid leaching of extractable iron from
Mount McRae samples indicates that siderite
dominates in the lower half of the formation,
which is consistent with the absence of O2 in
deeper depositional environments. On the other
hand, calcite is a primary carbonate phase in the
upper Mount McRae Shale, indicating the
general absence of soluble iron in the shallow
water column at this time. Carbonate and total
organic C d13C values increase progressively up
the core. Total organic C and total S values are
high throughout the Mount McRae Shale but

are notably enriched above the mineralogic tran-
sition in the interval between 135 and 153 m,
where up to 16 wt % C and S are observed. In
the interval between 130 and 135 m, visual
evidence of pyrite nodules, laminations, and graded
beds suggests some degree of sulfide remobiliza-
tion, which may help to explain the sharp drop in
total S abundance in the homogeneous-shale
host rock.

The high-resolution S isotope record reveals
considerable stratigraphic variation in d34S and
D33S (18), including substantial bed-to-bed os-
cillations. In evaluating the time-series S isotope
data, the Mount McRae Shale can be divided
(19) into a lower unit (>153 m), where d34S and
D33S show positive correlation, and an upper
unit (<153 m), where d34S values become in-
creasingly negative. Of particular interest is the
interval above 130 m, where positive D33S
values are coupled with negative d34S values;
this S isotope relation may record an important
environmental and biological event near the
Archean/Proterozoic boundary.

The lower half of the Mount McRae Shale
from the Archean Biosphere Drilling Project
(ABDP)–9 core is interpreted to have accumu-
lated in a deep, anoxic environment insofar as
sediments are dominated by sideritic shale and
banded iron-formation (13, 14). The positive
correlation between d34S and D33S in the lower
Mount McRae Shale has been interpreted as
either a primary atmospheric array (11) or mixing
between atmospherically derived NMD S with
mass-dependent terrestrial inputs. This mixing
may well explain the long-term and bed-to-bed
variability in S isotope compositions (Figs. 1 and
2B). It is difficult to independently assess the
quantitative contribution of terrestrial inputs
[with d34S and D33S ~ 0 per mil (‰)] relative to
NMD inputs. However, nonzero values of D33S
(either positive or negative) must ultimately be
linked to fluxes of sulfate and elemental S from
the atmosphere. We interpret the dominance of
positive D33S through this stratigraphic interval
as indicating the preferential incorporation of
reduced NMD S (atmospheric elemental S) into
marine sediments, probably facilitated by micro-
bial elemental S reduction. This microbial
process is capable of transferring the D33S to
pyrite, while imparting little to no additional
isotopic fractionation in d34S. Ono et al. (11)
previously explained variations in NMD signa-
tures within the Mount McRae strata by physical
and biological mixing of these atmospheric
sources. The isotopic similarity (in d34S and
D33S) between their core and ours, presently 300
km apart, points to a basin-scale phenomenon
linked through atmospheric inputs (20). How-
ever, rapid bed-to-bed (or even within bed)
variability and small differences in the magni-
tude of the positive D33S excursion probably
reflect local controls related to variable mixing
of S from distinct surface reservoirs, including
the deep and shallow ocean as well as terres-
trial environments.
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As noted above, the upper half of the
Mount McRae Shale, which is dominated by
turbidites of carbonate and shale that accumu-
lated below the storm wave base, is character-
ized by sulfides with negative d34S values
coupled with positive D33S values (Figs. 1 and
2A). The d34S and D33S values of these sulfides
imply microbial sulfate reduction with larger
isotopic fractionations, which may reflect sulfate
reduction in the water column (21), possibly
coupled with rising sulfate concentrations (22).
This interpretation is consistent with the high
organic C contents in sediments above 153 m in
the core, which are plausibly linked to high rates
of primary productivity that released oxidants
into the shallowmarine environment. On the other
hand, the positive D33S values reflect incor-
poration of reduced photolytic S. To account for
these two features, we propose that the S isotope
signatures in the upper Mount McRae Shale
reflect the establishment of a widespread and
possibly permanent oxidative S cycle, perhaps for
the first time in Earth’s history, in a water column
that was stratified with respect to oxygen (23).

In the late Archean oceans, O2 would accu-
mulate in highly productive regions along con-

tinental margins and perhaps to a lesser degree
in distal settings, where nutrient levels were high
enough to stimulate oxygenic photosynthesis.
Possible explanations to account for the isotopic
observations above 153 m include elemental S
reducers capable of producing large 34S deple-
tions (an unlikely scenario given the small
redox change associated with this metabolic
pathway) or the activation of microbial dispro-
portionation reactions (24). Because the former
are currently unknown and the latter are not
clearly evident until the mid-Proterozoic (25),
we suggest an alternative solution related to
increases in O2 initiated during the productivity
event recorded in the core above 153 m. In-
organic S oxidation generally requires high
levels of dissolved O2, whereas microbial S
oxidation, which is thought to be ancient in
origin, would proceed at lower (or absent) O2

concentrations but still would require an elec-
tron acceptor to drive phototrophic oxidation.
In either case, the magnitude of isotopic frac-
tionation associated with oxidation is small
(26) and unlikely to account for the negative
d34S values of sulfides in the upper Mount
McRae sediments. Thus, we propose that the

sulfate formed through oxidation (with positive
d34S and D33S) was re-reduced by microbial
sulfate reduction to form sulfides depleted in
d34S but retaining positive NMD D33S values
(Figs. 1 and 2A).

The organic C and S spike between 153 and
135 m corresponds to an interval where both
d34S and D33S values are typically negative (19).
Although broadly binned with the upper Mount
McRae Shale interval, these sediments provide
important environmental constraints on a source
of S (with a negative D33S composition) and the
mechanism for its sink into sediments. Low
Archean atmospheric O2 levels would generally
limit oxidative weathering, the principal source
of sulfate to the modern oceans. With rising
atmospheric O2 levels, however, some metals
and associated S from terrestrial sources may
have been released to the shallow marine
environment (9), but contributions from juvenile
S (D33S = 0) or preexisting sedimentary sources
(D33S > 0) cannot account for the negative D33S
value of the S from this interval. Thus, a major
source of sulfate to the Archean ocean at this
time would have been atmospheric in origin and
would have carried a negative D33S signature

Fig. 1. Lithologic and time-series elemental (C and S) and isotopic (d13C,
d18O, d34S, and D33S) trends in the ~2500 million-year-old Mount McRae
Shale. Sequence subdivisions are based on (15). Trends in D33S in the lower

Mount McRae Shale are correlated with equivalents in a separate core drilled
some 300 km away from the core in this study (11). VPDB, Vienna Pee Dee
belemnite; TOC, total organic C; VCDT, Vienna Canyon Diablo Triolite.
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(1, 4). In keeping with previous arguments for
Archean seawater sulfate (27), we interpret deep-
and open-ocean seawater sulfate as having a
negative D33S composition and acting as the
major source of S in the pyritic interval above
153 m. Sulfate in the anoxic deep ocean was
nonetheless likely to have been low (potential-
ly <200 mM) (22) and possibly even lower on
the continental shelves. However, we suggest
that enhanced microbial sulfate reduction,
stimulated by high rates of organic C burial in
the presence of abundant reactive iron, would
serve as an effective long-term sulfate sink and
conceivably result in the concentration of open-
ocean S (with negative D33S) into the sedi-
ments (28).

Further insight into the Archean S cycle, spe-
cifically atmospheric evolution, is gained through
the evaluation of the D36S/D33S relation.Whereas
mass-dependent processes fractionate 33S and
36S in systematic ways (D36S/D33S ~ –7) (29, 30),
NMDphotochemical experiments (2, 31) suggest
a wavelength dependence to the D36S/D33S
relation, and with a few exceptions, observa-
tions from the Archean record generally follow

D36S/D33S ~ –1. This value is broadly consistent
with measurements of sulfides from a wide range
of Archean sediments (1, 32). Additionally, the
D36S/D33S relation may characterize NMD con-
tributions to surface environments even when
the absolute magnitude of D33S is small (33, 34).
The high-resolution 36S analysis of the Mount
McRae Shale reveals measurable differences
for D36S/D33S within the succession (Fig. 2, C
and D), further supporting the stratigraphic dis-
tinctions outlined above. The resolvable differ-
ence between the D36S/D33S relation in the upper
and lowerMountMcRae Shale indicates a change
in atmospheric composition, because according
to current knowledge, such shifts can only be
caused by changing photochemical reactions in-
volving S-bearing gases (35).

If the change in atmospheric composition
suggested above is real, we expect the signal to
be widespread in nature. To test this prediction,
we have undertaken S isotope analyses of sam-
ples from the broadly equivalent Transvaal Basin
in South Africa. The studied South African core
intersects the Gamohaan and Kuruman Iron
Formations (5, 12, 13, 36), which record sim-

ilar lithologic transitions to those observed in
northwestern Australia. Although it is possible
that these two successions (now over 8000 km
apart) accumulated along the margins of a con-
tiguous ocean basin, palinspastic reconstruc-
tion (37) of the two subbasins on the basis of
existing outcrop area suggests that the core
locations were at least 1000 km apart when the
sediments accumulated.

The similarity in S isotope records between
the South African and Australian sediments is
pronounced (Fig. 2). The correlation between
these widely separated basins strongly supports
the spatially pervasive character of D33S (and
D36S) production, implying a degree of lateral
atmospheric homogeneity. The D36S/D33S of the
lower portion of the South African core matches
that of the lower Mount McRae Shale, whereas
the D36S/D33S from the upper portion is quite
similar to that of the upper Mount McRae
sediments. The consistency of the d34S versus
D33S and D33S versus D36S relations between
the Australian and South African cores indicates
that the S isotope variations reflect widespread
and probably global variations in the Archean S
cycle. The origin of the profound d34S and D33S
anomaly at ~170 m in the Mount McRae core
and its equivalent in South Africa is unknown,
but it is probably related to a pulsed flux of
atmospheric inputs to surface environments that
was captured over long distances in similar dep-
ositional settings. Whereas the transition cap-
tured at ~153 m might reflect changes in the
atmospheric O2 budget, it is also possible that
changes in the abundance of other atmospheric
species (CO2 and CH4) may be responsible for
differences in the D36S/D33S relations. However,
the independent trace-metal evidence (9) and
lower stability of methane under oxidizing con-
ditions point to an increasingly important role
for O2 in surface environments.

We interpret our data from Western Aus-
tralia and South Africa to suggest a progres-
sive oxygenation of the Archean biosphere.
This conclusion is in accord with the trace-
metal data (9), which similarly suggest the
onset of oxidative processes. Combined, these
time-series records of mineralogic, elemental,
and S isotopic change provide clues to cou-
pled changes in the redox state of the shallow
ocean (largely before the atmosphere became
oxygenated) in relation to biological innova-
tion before the Archean/Proterozoic boundary,
including the oldest evidence for an active and
globally distributed oxidative S cycle.
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A Whiff of Oxygen Before the
Great Oxidation Event?
Ariel D. Anbar,1,2* Yun Duan,1 Timothy W. Lyons,3 Gail L. Arnold,1 Brian Kendall,4
Robert A. Creaser,4 Alan J. Kaufman,5 Gwyneth W. Gordon,1 Clinton Scott,3
Jessica Garvin,6 Roger Buick6

High-resolution chemostratigraphy reveals an episode of enrichment of the redox-sensitive
transition metals molybdenum and rhenium in the late Archean Mount McRae Shale in Western
Australia. Correlations with organic carbon indicate that these metals were derived from
contemporaneous seawater. Rhenium/osmium geochronology demonstrates that the enrichment is
a primary sedimentary feature dating to 2501 ± 8 million years ago (Ma). Molybdenum and
rhenium were probably supplied to Archean oceans by oxidative weathering of crustal sulfide
minerals. These findings point to the presence of small amounts of O2 in the environment more
than 50 million years before the start of the Great Oxidation Event.

Many lines of evidence point to a rapid
rise in the partial pressure of atmospher-
ic O2 (PO2

) from <10−5 times the pre-
sent atmospheric level (PAL) between 2.45 and
2.22 billion years ago (Ga) (1, 2), a transition often
referred to as the Great Oxidation Event (GOE).

The GOE could have been an immediate con-
sequence of the evolution of oxygenic photo-
synthesis (3). Alternatively, O2 biogenesis may
be ancient (4). If so, the GOEwas a consequence
of an abiotic shift in the balance of oxidants and
reductants at Earth’s surface (5–8). This debate can

be addressed by looking for evidence of localized
or short-lived concentrations ofO2 before 2.45Ga.

The abundances of some transition elements
in sedimentary rocks are sensitive to the availa-
bility of O2 (9). In particular, in the modern oxy-
genated environment, molybdenum (Mo) exists
in rivers and oceans primarily as the unreactive
molybdate ion (MoO4

2–). Oxidative weathering
of Mo-bearing sulfide minerals in crustal rocks
leads to the accumulation of Mo in the oceans,
where it is the most abundant transition element
(at a concentration of ~105 nM) (10, 11). The
abundance of Mo in the oceans is reflected in
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