
dikes that connect with a larger sill about 100 m below the surface.

Mineralization consists of wolframite, cassiterite, scheelite, and

molybdenite in quartz veins and phyllic-altered microgranite and

developed in three phases: early quartz-molybdenite stockwork

veining; wolframite- and scheelite-bearing, greisen-bordered vein-

ing; and late quartz–carbonate–fluorite veining. U–Pb analysis of

zircon from a quartz vein gives an approximate age of 575 Ma (Sta-

cey and Stoeser, 1984), which is consistent with mineralization at

Fig. 23. Simplified plot of gold occurrences in the Arabian–Nubian Shield, showing their wide distribution throughout the region. The occurrences are predominantly late

Cryogenian–Ediacaran orogenic-type gold in a variety of structural and lithologic settings, but include epithermal deposits (Mahd adh Dhahab, Al Amar), some VMS-gold, and

carbonate-altered ultramafic-associated gold. After Saudi Arabian Mineral Occurrence Documentation System (for the Arabian Shield); Botros (2002) (for the Eastern Desert,

Egypt); Klemm et al. (2001) (for northern Sudan); Tadesse et al. (2003) (for Ethiopia); Jelenc (1966) for Eritrea. Major deposits are named. Important orogenic-gold

occurrences in Ethiopia, e.g., Lega-Dembi, are in the Adola Belt, at about 5°N, south of the present figure. Inset, after Helmy et al. (2004) as an example of the structural control

on orogenic-type deposits.
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the time of granite emplacement. Fluid inclusions and oxygen iso-

tope data indicate that the deposit formed over a temperature

range of 120–550 °C, from low salinity magmatic andmetamorphic

fluids, and at a depth of about 4.2 km (Kamilli et al., 1993). Eigh-

teen shallow percussion drill holes in the northern part of the

occurrence outline a resource of 800,000 t of quartz-veined

microgranite containing 0.090–0.117% WO3 and 0.007–0.012% Sn,

and the whole occurrence is estimated to be about 10 Mt.

8.2.3. Other types of granitoid-associated mineralization

Other types of late Cryogenian–Ediacaran granitoid-associated

mineralization in the Arabian Shield include Ujaiyah (Khushaymi-

yah) (Mo–W–Bi), Bi’r Tawilah (W–Mo–Sn), and the Ad Dawadimi

silver district (Pb–Zn–Ag), as well as a mineralized breccia pipe

(Ablah-F), REE-bearing pegmatites and silexites, and contact Fe-

replacement deposits associated with alkali-feldspar syenite,

quartz alkali-feldspar syenite, quartz syenite, and particularly their

fine-grained apical variants.

The Ujaiyah prospect is hosted by the Kushaymiyah batholith

(611 ± 3 Ma; Agar et al., 1992) up to 50 km across, made up of as

many as ten overlapping subcircular plutons of monzogranite

and granodiorite, each 10–15 km in diameter. The batholith in-

trudes the Murdama group, and septa of Murdama rock are incor-

porated in the southeastern margin of the batholith. Mineralization

is focused on the Thaaban pluton in the southeastern part of the

batholith. The pluton is a ring complex with a core of quartz mon-

zonite, an outer zone of granodiorite, and an outermost ring of

younger quartz monzonite. The core is cut by a quartz vein swarm

emplaced in pervasively sericitized and greisenized quartz monzo-

nite. The veins carry disseminated pyrite, molybdenite, and schee-

lite with minor galena, chalcopyrite, and bismuthinite. The margin

of the pluton has veins with Pb, Zn, Cu, and Ag. Metal values are

low (averaging 80 ppmMo in samples of quartz vein and host rock;

and 430 ppm in veins alone), and no serious investigation has been

conducted since early work by the USGS Saudi Arabian Mission

(Dodge and Helaby, 1974).

The Bi’r Tawilah intrusion is a polyphase body of quartz leucod-

iorite, porphyritic biotite granodiorite, microgranodiorite, fine-

grained porphyritic granite, and veins of albite microgranite (Coll-

enette and Grainger, 1994). The intrusion was emplaced in seri-

cite–quartz–chlorite schist immediately east of the Bi’r Tawilah

thrust. Mineralization consists of aggregates and disseminations

of wolframite, cassiterite, traces of base-metal sulfides, and pyrite

in quartz veins in the intrusion and wall rock. Grades in the wes-

tern part of the occurrence average 0.69% WO3, 0.13% Sn, and

26 g/t Ag. Bi’r Tawilah tungsten was a primary focus of exploration

in the area until a greater importance of gold was recognized.

The Ad Dawadimi silver district (Al-Shanti, 1976; Collenette and

Grainger, 1994) comprises Pb–Zn–Ag mineralized quartz veins,

which are similar to orogenic mesothermal gold veins in other

parts of the shield but unique in that silver is the main economic

metal. The district is in the heart of the Ad Dawadimi terrane in

the eastern part of the shield centered on the town of Ad Dawa-

dimi. The veins, many the site of ancient workings, crop out in

an area of about 30 km N–S and 10 km E–W. Most of the mineral-

ized veins, which trend either NW or NE, are in shear zones in a

biotite monzogranite–granodiorite–quartz monzodiorite batholith

or layered gabbro. The main silver minerals are polybasite, pyrar-

gyrite, and freibergite, in association with galena and subordinate

sphalerite. The wall rocks are extensively brecciated and perva-

sively affected by propylitic and weak phyllic alteration. The rea-

son for such a concentration of silver-mineralized veins in this

part of the shield is not known. Al-Shanti (1976) concluded that

the mineralization was controlled by: (1) emplacement of the

granite batholith; (2) Najd faulting which produced suitable host

structures; and (3) the presence of Abt-formation argillaceous sed-

imentary inclusions in the batholith. During early investigations,

only eight occurrences yielded results that justified drilling, and

of the eight, only one (Samrah) is of any significance, with an esti-

mated resource of 278,000 t grading 653 g/t Ag, 5.12% Zn, and

1.64% Pb.

Ablah, in the northwestern part of the Asir terrane, is the largest

late Cryogenian–Ediacaran fluorite occurrence known in the ANS

(Collenette and Grainger, 1994). It consists of massive fluorite

and veins and pods of Cu-, Pb-, Zn-, and Ag-sulfides in a breccia

pipe up to 22 m in diameter. The pipe is emplaced in a pegma-

tite–aplite breccia 300 m long and 130 m wide, which in turn is

emplaced in a diorite host. Jabal Hamra, in the Hijaz terrane, is a

lenticular vertical body of fine-grained silexite, an igneous rock

composed essentially of primary quartz (60–100%), intruded into

a quartz-alkali-feldspar syenite. The pipe carries disseminations

of Nb-, Ta-, Sn-, REE-, Y-, Th-, U-, and Zr-bearing minerals and

the host syenite contains pegmatite with Nb, Zr, Y, and REE

minerals.

8.3. Late Cryogenian–Ediacaran arc-related mineralization

A distinctive suite of late Cryogenian–Ediacaran mineral occur-

rences are found in the Ar Rayn terrane in the easternmost ANS

(Doebrich et al., 2007). They represent convergent-margin deposits

of the type that elsewhere in ANS are associated with the older

early-middle Cryogenian magmatic arcs but continued into the late

Cryogenian–Ediacaran in the Al Amar arc because of ongoing

>689–615 Ma subduction. The most notable occurrences are Al

Amar, a polymetallic epithermal deposit, and Khnaiguiyah, a major

Zn–Cu sulfide deposit (see references in Sangster and Abdulhay,

2005). Neither occurrence is dated, but mineralization is believed

to be either approximately the same age or somewhat younger

than the >689–615 Ma Al Amar-arc host rocks.

The Al Amar deposit comprises polymetallic and gold-bearing

veins, subordinate massive sulfides, and beds and lenses of exha-

lative talc, barite, and Ca–Fe–Mn carbonates located a few hun-

dred meters east of the Al Amar fault. The Al Amar host rocks

include mafic to intermediate pyroclastic rocks and subordinate

andesite flows; felsic volcaniclastic rocks and lava, subordinate

red jasper, and polymict conglomerate; and felsic to intermedi-

ate tuffs and pyroclastic flows. The principal veins occur in

two subvertical, northwest-trending zones referred to as the

North and South Veins. They extend on the surface as much as

500 m along strike, discordant to the bedding, and to depths of

at least 350 m. The veins are composed of quartz and subordi-

nate Ca–Fe–Mn carbonates, barite, anhydrite, and sulfides (pyr-

ite, sphalerite, chalcopyrite, and galena). Gold is locally free

but mainly occurs as Au–Ag tellurides and electrum in the sul-

fides. Massive sulfide ore consists of sphalerite, barite, chalcopy-

rite, talc, carbonate, and chlorite, and probably originated during

a period of volcanic quiescence. Doebrich et al. (2007) refer to

the vein mineralization as epithermal, whereas Sangster and

Abdulhay (2005) use the terms ‘‘structurally controlled, epige-

netic’’. Pouit et al. (1984) interpret the massive sulfide mineral-

ization as a volcanogenic exhalative deposit coeval with the

formation of the Al Amar group. The deposit is in production,

and as of mid-2007, had a reserve of 1.4 Mt ore grading 9.9 g/t

Au, and total mineral resources comprising 2.0 Mt grading

11.2 g/t Au (SRK Consulting, 2007).

Khnaiguiyah is a sulfide deposit of uncertain origin in strongly

sheared rocks in the northern part of the Ar Rayn terrane. It

consists of four stratiform lenses of magnetite, hematite, pyrite,

sphalerite, chalcopyrite, rhodochrosite, rhodonite, Ag-, Pb- and

Bi-tellurides, and barite in carbonate-altered shear zones. The

orebodies are hosted by discontinuous anastomosing bands of

carbonatized rock in rhyolitic and subordinate andesitic rocks of
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the Al Amar group. Alternative interpretations of the deposit are

that it is a hydrothermal exhalation contemporary with the enclos-

ing volcanic rocks—a type of VMS deposit (Testard, 1983), or that it

is the result of hydrothermal alteration along post-metamorphic,

posttectonic shear zones (BRGM Geoscientists, 1993). The Zn

grades range between <5% and 33% and Cu grades range up to

1.5%. Resource figures published by BRGM Geoscientists (1993)

indicate a ‘‘drill-measured total resource’’ of 24.8 Mt grading

4.11% Zn, 0.56% Cu.

8.4. Mafic-pluton associated mineralization

The Lakathah complex in the southwestern Arabian Shield

(Martin et al., 1979) is a nearly circular posttectonic ring-dike

Fig. 24. Refractory and other special metal occurrences associated with late- to posttectonic, A-type granites, peraluminous granites, and localy pegmatites in the Arabian–

Nubian Shield, after Saudi Geological Survey Mineral Occurrence Documentation System and Drysdall et al. (1984) (for the Arabian shield), Küster (2009) for Egypt, Sudan,

and Somalia; and Jelenc (1966) and Tadesse et al. (2003) for Ethiopia and Eritrea. Occurrences are Ta–Nb–U rich unless otherwise indicated.
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intrusion 10 km across composed of a pyroxenite–hornblendite

core, an intermediate zone of diorite–gabbro, and an outer ring

of syenite. Concordant lenses of titaniferous magnetite are present

in the core ranging in thickness from a few centimeters to 3 m and

as much as 50 m long. The Wadi Kamal complex, NW of Yanbu’ al

Bahr in the northwestern Arabian Shield, is an irregular body of

norite, anorthosite, gabbro, and leucogabbro forming southern

and northern lobes connected by a trail of scattered intrusions in

surrounding schist and amphibolite. Gabbro and anorthosite pre-

dominate; norite forms an outer margin to the southern lobe. Sam-

ples of magnetite contain as much as 26% Ti and between 0.30%

and 1.21% V2O5. A smaller body of dunite, amphibole-rich gabbro,

and an ultramafic–mafic layered complex immediately S of the

Kamal complex is a target for nickel and PGM mineralization.

The concentrically zoned mafic–ultramafic Akrarem complex in

the Eastern Desert contains Cu–Ni–PGE mineralization with net-

textured and massive lenses of pyrrhotite, pentlandite, and chalco-

pyrite, as well as Cr-magnetite (Helmy and Mogessie, 2001). The

ages of these intrusions, and their mineralizations, are not known,

but they are undeformed massive plutons and, as suggested in Sec-

tion 4.2, are likely to be late Cryogenian–Ediacaran.

9. Discussion

As schematically shown in Fig. 3, the final 100 million years of

development of the Arabian–Nubian Shield is widely modeled in

A

Fig. 25. Late Cryogenian–Ediacaran dikes swarms in the Arabian Shield. (A) A synoptic view showing the widespread distribution of dikes plotted on a simplified tectonic

map of the shield. (B) Details of dikes in the Midyan terrane. Note the swing in orientation toward the Gulf of Aqaba reflecting rotation of Ediacaran dikes during Cenozoic

sinistral strike slip on the Dead Sea transform. (C) Details of dikes in the Ad Dawadimi and Ar Rayn terranes. Note the change in prevailing dike orientation from north to

south in the Ad Dawadimi terrane suggesting variation in the extension direction. (D) Detail of dikes in the Khida terrane and adjacent areas. Arrows shows schematic

directions of extension implied by the prevalent strike-orientations of the dikes.
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terms of crustal and lithospheric reworking. Elements in this pro-

cess include transitions from peak orogeny to orogenic collapse,

from lateral compression to pervasive lateral extension, from sub-

duction-related magmatism and deposition to posttectonic/anoro-

genic magmatism and deposition, from the creation of intraoceanic

juvenile arcs to the formation of a stable crust, and from periods of

mountain-building and uplift to rapid and extensive erosional

denudation.

Representative presentations of these transitions are by Stern

(1994), Greiling et al. (1994), Abdeen and Greiling (2005), Blasband

et al. (2000), Genna et al. (2002) and Johnson and Woldehaimanot

(2003).

The model by Stern (1994), which is the background to the

model shown in Fig. 3, and is widely accepted, initiates the forma-

tion of the ANS with seafloor spreading and the creation of arcs and

backarcs following and during the breakup of Rodinia. Formation

continued with the amalgamation of arc terranes and a few older

continental fragments into new juvenile crust between about

870 Ma and 690 Ma. Continental collision and shortening first led

to crustal thickening and uplift perhaps beginning about 750 Ma

and continued with orogenic collapse and tectonic escape along

strike-slip shear zones and faults until the end of the Precambrian.

The model of Greiling et al. (1994) and Abdeen and Greiling

(2005) focuses on geologic events in the Eastern Desert of Egypt.

They noted that the regional structure of the Eastern Desert mainly

reflects post-collisional deformation characterized by extensional

collapse, in some areas, and compression and (late) transpression,

in other areas. Greiling and his colleagues noted the particular

tectonostratigraphy of the Eastern Desert comprising suites of

gneisses (Tier 1) structurally below low-grade supracrustal

successions (Tier 2) (e.g., El Ramly, 1972; Bennet and Mosley,

1987; El-Gaby et al., 1988; Hermina et al., 1989; Shimron, 1990),

but pointed out the lack of any difference between Tier 1 and Tier

2 rocks in terms of their protolith and geochemistry. They pro-

posed that the two differ only in their degree of metamorphism

and fabric and both represent juvenile Neoproterozoic crust, an

B

D

C

Fig. 25 (continued)
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interpretation unequivocally supported by geochronologic and iso-

topic research over the past three decades, for example by work on

the Meatiq and Hafafit domes (Andresen et al., 2009; Liégeois and

Stern, 2010). In the Greiling and Abdeen-Greiling model, early

Neoproterozoic igneous and metamorphic terrane-forming events

occurred between 900 and 600 Ma. Collisional deformation of the

terranes ended about 615–600 Ma, marked by a transition from

Cryogenian compressional tectonics associated with calc-alkaline

magmatism to an Ediacaran tectonic style that was dominated by

A-type alkali granite magmatism. Greiling et al. describe exten-

sional collapse occurring between 595 and 575 Ma, generating fea-

tures such as molasse basins, normal faults, uplifted metamorphic

core complexes flanked by low-angle normal faults, and high-angle

strike-slip shear zones. A distinctive feature of their model is that

the post-collisional extensional phase associated with NNW–SSE

compression, NW-folding, and SE-dipping thrusts, was followed

by a short period of shortening, mainly in a NNW–SSE direction,

which led to folding and thrusting toward the NNW, and a subse-

quent period of transpressional wrenching related to Najd faulting.

The Najd faulting resulted in northwest-trending sinistral faults

and positive flower structures with NE-verging folds and SW-dip-

ping thrusts. Regional compression after extension is interpreted

as a continuation of plate convergence after an episode of exten-

sional collapse.

Blasband et al. (2000) emphasize the presence of a widespread

phase of Ediacaran crustal extension at the end of development of

the ANS, but do not envisage a subsequent phase of compression.

Formation of the ANS began with an oceanic phase represented

by ophiolites and island arcs, followed by arc accretion, the devel-

opment of sutures, and lithospheric thickening. The terminal

events, triggered by gravitational instability leading to collapse of

the ANS orogen, included pervasive NW–SE extension contempo-

rary with the development of metamorphic core complexes, late-

orogenic extensional basins, and large strike-slip shear zones.

Genna et al. (2002), discussing the Arabian Shield, refer to pre-

Panafrican structures (>690 Ma) and Panafrican structures (690–

590 Ma) that overprint and partly obscure the earlier structures.

The pre-Panafrican structures developed in association with the

formation, amalgamation, and accretion of oceanic volcanosedi-

mentary terranes and the emplacement of diorite to granitic intru-

sions. These precratonic units were brought together by collision at

about 690 Ma, which closed the oceanic domain and created su-

tures. Subsequent Panafrican tectonism (690–590 Ma) is repre-

sented by a complex web of structures referred to as the Nabitah

Belt comprising anastomosing strike-slip shear zones, gneiss do-

mes, and foreland and intracontinental molasse basins. Genna

et al. infer that subsequent widespread intracontinental extension

(590–530 Ma) caused crustal thinning, bimodal magmatism, the

emplacement of significant dike swarms, and volcanism. A marine

transgression toward the end of the extension phase led to deposi-

tion of the Jibalah group and effectively ended formation of the

Arabian Shield. Further shield history belongs to the Phanerozoic

passive-margin that developed along the margin of the shield.

In the tectonic model of Johnson and Woldehaimanot (2003),

the Arabian Shield is considered to consist of Archean and Paleo-

proterozoic continental crust at its margins and in the Khida ter-

rane, and a large swath of Neoproterozoic (c. 870–670 Ma)

continental–marginal and juvenile intraoceanic magmatic-arc

terranes that accumulated in the Mozambique Ocean. Subduc-

tion began about 870 Ma, and initial arc–arc convergence and

terrane suturing occurred at about 780 Ma, marking the begin-

ning of ocean-basin closure and Gondwana assembly. Terrane

amalgamation continued until about 600 Ma, resulting in the

juxtaposition of eastern and western Gondwana. Terrane amal-

gamation was associated with overlapping periods of post-

amalagamation basin formation, rifting, compression, strike-slip

faulting, and the creation of gneiss domes in association with

extension and/or thrusting. Final assembly of Gondwana was

achieved by about 550 Ma. Most post-amalgamation basins con-

tain molasse deposits, but those in the eastern Arabian Shield

and Oman have marine to glaciomarine deposits, which indicate

that seaways penetrated the orogen soon after orogeny. The var-

ied character of the post-amalgamation events reflects alternat-

ing periods of Late Neoproterozoic extension and shortening,

uplift and depression, deposition and erosion.

These models have many elements in common, but differ in de-

tail about the timing and significance of the events that went into

the creation of the ANS. It is worth considering, therefore, the evi-

dence for some of the key elements in these models within the late

Cryogenian–Ediacaran timeframe of this review.

9.1. Extension

A common theme in many Ediacaran tectonic models of the

ANS is upper crustal extension both in a broadly N–S or NW–SE

direction parallel to the orogen, and an E–W direction transverse

to the orogen. The principal evidence for extension derives from

a set of interrelated structural features: (1) dike swarms; (2)

low-angle normal faults or detachments; and (3) transcurrent

faulting and extensional basins.

9.1.1. Dike swarms

Late Cryogenian–Ediacaran mafic, felsic, and composite mafic–

felsic dikes are widespread in the ANS. They are well known in

the northern part of the Nubian Shield, Sinai, and Jordan (Stern

et al., 1984; Abdel-Karim and El-Baroudy, 1995; Jarrar, 2001; Jarrar

et al., 1992, 2004). Similar, although less well known, dike swarms

are present in the Arabian Shield (Fig. 25) (Genna et al., 2002). Such

dikes are unambiguous evidence of extension during the final

stages of shield development (Stern et al., 1984; Stern, 1985; Gen-

na et al., 2002). The dikes are posttectonic. They represent some of

the youngest Neoproterozoic rocks in any given area and cross cut

most other rocks and structures. Several of these dikes have been

dated, including lamprophyre dikes that intrude the Ajjaj shear

zone in the Midyan terrane (573 ± 6 Ma; Kennedy et al., 2011), a

577 ± 5 Ma dike that intrudes the Jibalah group in the north-cen-

tral part of the Arabian shield (U–Pb zircon age; Kusky and Matsah,

2003), a 591 ± 9 composite dike from Feiran, Sinai (Stern and Man-

ton, 1987), a 591 ± 12 Ma dike in NE Egypt (Stern and Voegeli,

1987), dikes between 600 and 540 Ma in northernmost Sinai (Kes-

sel et al., 1998), pegmatite dikes between 574 ± 11 and

564 ± 10 Ma in Jordan (Jarrar et al., 1983), and composite and mafic

dikes in Jordan dated at 575 ± 6 Ma and 545 ± 13 Ma (Jarrar, 2001).

In detail, Genna et al. (2002) recognize multiple generations of

posttectonic dikes. They occur in linear or curved swarms varying

from a few centimeters to meters in thickness and from several

meters to several tens of kilometers in length. In a given area,

the dikes may have a common strike direction or form a conjugate

system with intersecting strikes. The dikes are mostly subvertical,

commonly rhyolitic, but include basalt and andesite. Bimodal

swarms are common, containing andesitic and rhyolitic dikes that

display intrusive relationships indicative of synchronous emplace-

ment of mafic and felsic magma (Stern et al., 1984) or consist of

composite dikes that individually are bimodal with felsic cores

and mafic external parts (Jarrar et al., 2004; Stern and Voegeli,

1987; Katzir et al., 2007). The orientations of the swarms vary

across the region and no systematic quantitative analysis of their

strikes has been published other than work by Genna et al.

(2002). But on inspection (e.g., Fig. 25; Fig. 2 in Stern et al., 1984;

Fig. 1C in Jarrar et al., 1992), it is evident that the dikes in many

swarms trend in an easterly direction. For example, those in the

North and Central Eastern Desert trend NE (Stern et al., 1984;
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Greiling et al., 1988, 1994) as do those in theHa’il (Fig. 25A) andMid-

yan and Ar Rayn terranes in the Arabian Shield (Fig. 25B and C).

Dikes in the Khida terrane trend ESE (Fig. 25D), whereas those in

the Elat and Amran area (southern Israel) include older calc-alka-

line N–S-trending dikes, younger tholeiitic NE–SW-trending dikes,

and a few basalt dikes trending NW–SE (Kessel et al., 1998). The

orientations of these dikes are strong evidence of broad northerly

extension in the northern ANS during the Ediacaran. Garfunkel

(1999) estimates that intrusion of swarms of basaltic to rhyolitic

dikes in the northern ANS was accommodated by �20 km regional

dilation. It should be noted however, that not all easterly trending

dikes in the Arabian–Nubian Shield are Ediacaran. Greiling et al.

(1988) describe a major swarm of ENE-trending basaltic dikes in

the northern part of the Hafafit dome that are intruded by the

Gabal Abu Khrug ring complex (�90 Ma; Lutz et al., 1978) and

are believed to be about 104 Ma (Greiling et al., 1988).

9.1.2. Low-angle normal faults and shear zones

Late Cryogenian–Ediacaran low-angle normal faults or detach-

ments are reported from many parts of the ANS, likewise imply-

ing crustal extension. The most widely publicized are in the

North and Central Eastern Desert and Sinai, described from

gneiss domes and structural highs. The Meatiq and Hafafit do-

mes are flanked on the north and south by NNW- and SSE-dip-

ping normal faults, comprising post-accretion low-angle ductile

shear zones with top to NNW or top to SSE senses of slip (Fritz

et al., 1996, 2002; Fowler and Osman, 2009; Rice et al., 1992). In

Sinai, Blasband et al. (1997, 2000) describe moderately NW-dip-

ping shear zones with top-to-the-NW sense of shear in Wadi

Kid, and conclude that this is an extensional core complex,

although Fowler et al. (2010) suggest that the low-angle shears

are collision-stage thrusts. U–Pb SHRIMP zircon ages reported

by Stern et al. (2010a) constrain extension in the Kid complex

to have occurred between �600 MA and 585 Ma. The constraint

is provided by a concordant age of 598 ± 8 Ma obtained from a

rhyodacite clast in the Beyda Formation (Heib Formation of

Shimron, 1984), which predates development of the Wadi Kid

core complex, and a concordant age of 585 ± 8 Ma obtained from

the Kid granite, which postdates the core complex. In the south-

ern ANS, low-angle shear zones are reported from the �100 km-

long 1–5 km-wide north-trending Chulul shear zone in the Bilbul

belt of Ethiopia, containing moderately east-dipping mylonitic

fabric displaying a top-to-the-SE sense of movement (Tsige and

Abdelsalam, 2005). Pervasive subhorizontal to moderately west-

dipping foliations in HP–HT amphibolite-facies gneiss and schists

occur in the Ghedem Domain in eastern Eritrea (Ghebreab,

1999). A low-angle, top-to-the-E/SE brittle–ductile shear zone

separates the Ghedem Domain in the footwall from lower grade

metavolcanic and metasedimentary rocks of the Nakfa or Bizen

Domain in the hanging wall (Ghebreab and Talbot, 2000; Beyth

et al., 2003). Overall, these structures suggest that NW–SE exten-

sion prevailed in the northern ANS, with extensional fabrics dip-

ping NW and(or) SE, whereas E–W extension prevailed in the

south.

9.1.3. Transcurrent faulting

As described above, late Cryogenian–Ediacaran transcurrent

faults of the Najd system are conspicuous in the ANS. The faults

are oblique to the main N–S trend of the EAO. In detail, the faults

are transpressional structures with components of vertical as well

as horizontal slip, but the prevailing sinistral sense of movement

implies overall N–S extension parallel to the axis of the EAO. Addi-

tional evidence of extension in association with the Najd faults is

the presence of the Dokhan–Hammamat and Jibalah group pull-

apart basins located between left-stepping faults or in strain-

releasing bends.

9.2. Exhumation, uplift, and denudation

Exhumation, uplift, and erosion are another set of interrelated

processes widely modeled by many authors for the final 100 mil-

lion years of evolution of the ANS. Exhumation refers to the return

of once deep-seated metamorphic rocks to the Earth’s surface and,

particularly, refers to the unroofing of a rock defined by the vertical

distance traversed relative to the Earth’s surface (Ring et al., 1999).

The term ‘‘uplift’’ has two aspects: one refers to the vertical motion

of Earth’s surface relative to sea level (surface uplift); the other to

the vertical motion of rock relative to sea level (rock uplift). Denu-

dation refers to the removal of material on the Earth’s surface.

The process driving ANS exhumation is debated. One school of

thought invokes orogenic collapse following the development of

an ANS crust thickened by orogeny. Avigad and Gvirtzman

(2009), for example, argue that extension and orogenic collapse

in the northern ANS were associated with the removal and replace-

ment of thickened lithospheric mantle by delamination. They esti-

mate that mantle delamination would cause more than 3 km uplift.

This would trigger rapid erosional unroofing of a rock carapace

about 10 km thick and cause extension as well as decompression

leading to partial melting of the ANS upper mantle and lower crust;

perhaps this was responsible for the flood of posttectonic magmas?

Erosional denudation may be followed by an episode of isostatic

uplift but erosion, as well as thermal subsidence, would ultimately

lower the surface to sea level. Other authors (e.g., Fritz et al., 1996)

argue that no substantial crustal thickening occurred, at least in

the Eastern Desert of Egypt, and infer that exhumation of, in this

case, core-complex gneisses, was achieved as the result of en-

hanced heat flow along fault systems during oblique NW–SE trans-

pression and by extension on normal faults. The enhanced heat

flow would have enabled the formation of syn-extensional pluto-

nism and triggered the exhumation of hot middle crust. Garfunkel

(1999) infers that the northern ANS underwent rapid erosion

beginning about 610 Ma following the magmatic phase at the

end of the orogenic period, during which the upper 8–12 km of

crust was removed in about 20 million years, lowering the average

relief by about 2 km. Later, the area was differentiated into basins

and highs associated with sedimentation and concurrent emplace-

ment of high-level alkali-rich plutons, and was eroded, which fur-

ther reduced the relief.

Direct evidence of exhumation, uplift, and denudation in the

ANS includes: (1) regional angular unconformities and nonconfo-

rmities and deposition of clastic sedimentary rocks; and (2) post-

metamorphic and(or) post-intrusion mineral cooling ages testify-

ing to tectonic exhumation.

9.2.1. Unconformities

Angular unconformities and nonconformities are present in the

ANS at the base of post-amalgamation basins. It is not always cer-

tain when these unconformities developed but it is likely they

developed due to uplift and denudation at many different times.

The oldest unconformity considered in this review is the middle

Cryogenian erosion surface that truncates the 660 ± 4 Ma Imdan

plutonic complex at the base of the Thalbah group. The group itself

was deposited in a terrestrial basin at some unknown elevation

above sea level. Erosional truncation of the plutonic complex indi-

cates several kilometers of exhumation prior to deposition of the

Thalbah group, and the thick sequence of conglomerate, sandstone,

and shale in the group itself evidences a vast amount of

denudation.

The Murdama group in the northeastern ANS was deposited at

or below sea level on an erosion surface truncating diorite, quartz

diorite, tonalite, granodiorite, and gabbro of the Suwaj domain

(�680 Ma) (Cole and Hedge, 1986) as well as mafic granulite (Cole,

1988). The presence of granulite beneath the Murdama unconfor-
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mity implies as much as 15–20 km exhumation prior to Murdama

deposition. The unconformity developed sometime between

emplacement of the Suwaj domain and the onset of Murdama

deposition, namely in the interval between 680 and 650 Ma. Dur-

ing the course of deposition, the basement of the Murdama group

must have undergone at least 10–15 km subsidence so as to

accommodate the thick clastic Murdama succession. The merely

local presence of conglomerate in the Murdama and the relatively

small conglomerate-clast size (pebble to cobble; not boulder) sug-

gest little differential uplift at the margins of the Murdama basin,

implying that erosion of the hinterland kept pace with exhuma-

tion. The thick succession of marine carbonates close to the base

of the Murdama group demonstrates that the surface of the basin

was at or below sea level. Murdama group deposition overlapped

and followed the 680–640 Ma Nabitah orogeny yet the deposi-

tional environments of the basin and other marine post-amalgam-

ation basins described earlier in this review, suggest that a large

area in the ANS on either side of the Nabitah mobile belt lacked

great elevation within a relatively short period after orogeny.

Either denudation was intense or the Nabitah orogeny did not pro-

duce a high mountain range, perhaps because the area underwent

shortening and extensive magmatism rather than a great degree of

thrust stacking. In the Timna area, Israel, a cryptic unconformity

developed sometime after emplacement of �630 Ma dikes (Katz

et al., 2004), which were metamorphosed at amphibolite facies,

and after intrusion of the epizonal Timna granite �610 Ma (Beyth

et al., 1994).

In Egypt, the unconformities at the base of the Dokhan Volcan-

ics and Hammamat Group developed sometime after emplacement

and exhumation of 620–610 Ma granitoids. The coarse clastic sed-

iments of the Hammamat Group are evidence that exhumation and

erosion developed a land surface with significant relief, with con-

glomerates deposited at the discharges of high-relief drainage ba-

sins (Eliwa et al., 2010). The basins themselves have no marine

sediments, indicating elevations in the western part of the ANS

at this time above sea level. In Arabia, the minimum age of uncon-

formities beneath the Jibalah group is not well constrained. Jibalah

rocks in the Jifn basin, for example, overlie 625 Ma rhyolite (Kusky

and Matsah, 2003), but in the Antaq basin overlie rocks of the Su-

waj domain (�680 Ma). Differential uplift across basin margins is

considered to be the cause of fanglomerates in some of the terres-

trial dominated Jibalah basins (Kusky and Matsah, 2003). Stromat-

olitic carbonates and carbonates with indications of a marine

isotopic signature in other Jibalah basins suggest that the northern

and northeastern parts of the ANS had locally subsided below sea

level by 580–560 Ma.

The most profound unconformity in the ANS is the vast ero-

sion surface represented by the contact between the shield and

overlying Lower Paleozoic sandstone (Fig. 26). Wherever ob-

served, Lower Paleozoic sediments overlie a saprolitized-lateritic

weathered profile a few meters thick passing down into less

weathered shield rocks. The erosion surface has mostly low relief

(Fig. 26) and the basal Paleozoic rock is sandstone with only

scattered matrix-supported pebbles, not conglomerate. The sand-

stone was deposited by a continental-wide braided stream sys-

tem with a constant south-to-north (present configuration)

flow direction over a very gentle slope (Kolodner et al., 2006).

The sandstone now has mostly been removed from the ANS

but is preserved around the margins of and in rare outliers on

the Arabian Shield. This sandstone probably covered most of

the ANS at the time of its deposition. Intense chemical weather-

ing is considered to be important for the formation of the sub-

Paleozoic erosion surface (Avigad et al., 2005; Angerer et al.,

2011). Subsequent Phanerozoic burial vertically compacted later-

ite to about 75% of its original thickness (Angerer et al., 2011).

Worldwide, the Ediacaran was a period of glaciation, at �630

(Marinoan) and �580 Ma (Gaskiers) (Smith, 2009). Evidence for

Ediacaran glaciation is reported from Oman (e.g., Brasier et al.,

2000), but apart from local exposures of possible Jibalah-age dia-

mictite, the presence of Ediacaran glaciers in the ANS remains to

be demonstrated. It is therefore uncertain whether glaciation

helped carve the end-Precambrian peneplain.

The sub-Paleozoic erosion surface locally truncates the Jibalah

group and 580–560 Ma alkali granites, and in such localities the

unconformity has a maximum age of about 560 Ma. Elsewhere,

the erosion surface truncates much older rocks, and may reflect

erosion considerably older than 560 Ma. Cole and Hedge (1986) in-

fer that the northeastern Arabian Shield underwent as many as

three major periods of erosion prior to deposition of Lower Paleo-

zoic sandstone. Erosion between 640 and 615 Ma truncated the

Murdama group and older rocks and formed the surface on which

the Hibshi (632 Ma) and Jurdhawiyah (612–594 Ma) groups were

deposited. Further erosion may have followed emplacement of dio-

rite, granodiorite, and granite of the Idah suite (620–615 Ma). It is

possible that emplacement of this suite, as well as the volcanic

rocks of the Hibshi and Jurdhawiyah groups, resulted from such

extensive partial melting that the density structure and isostatic

equilibrium of the crust was altered enough to cause epeirogenic

uplift, leading to renewed erosion and the production of local

high-relief surfaces flanking Jibalah-group basins (Cole and Hedge,

1986). The Jibalah group and broadly contemporary peralkaline,

peraluminous, and leucocratic granites of the Abanat suite (580–

570 Ma) were, in turn, exhumed and eroded prior to deposition

of the Lower Paleozoic sandstone cover. It is interesting to note

that in several locations in the northeastern Arabian Shield, only

the apical parts of Abanat suite plutons are exposed and rhyolitic

flow and pyroclastic rocks vented by Abanat plutons are preserved,

implying that the Abanat plutons and associated volcanic rocks

were little exhumed and denuded. Idah suite plutons (�620; Cole

and Hedge, 1986), in contrast, are eroded to deeper levels. Because

little-eroded Abanat suite plutons and deeply eroded Idah suite

plutons are exposed in adjacent outcrops, Cole and Hedge (1986)

concluded that most erosion in the northeastern Arabian Shield oc-

curred after emplacement of the Idah suite but before intrusion of

the Abanat suite, likely, between about 615 and 580 Ma. Abanat

suite plutons were intruded into crust that had already been ex-

humed and denuded, but were themselves little eroded prior to

deposition of the Lower Paleozoic sandstone. Similar multiple peri-

ods of erosion are suggested for the northernmost ANS in Sinai, Ne-

gev, and Jordan (Samuel et al., 2007). The northern ANS contains A-

type granitoids and �580–530 Ma alkaline rhyolite and volcanic-

equivalents such as the Dokhan Volcanics of Egypt and Feinan vol-

canic succession in Jordan. As in the northeastern Arabian Shield,

the presence of late Ediacaran–Cambrian(?) intrusives and extru-

sive equivalents implies relatively little denudation and exhuma-

tion after their emplacement. But Samuel et al. (2007) infer that

emplacement of the A-type rocks was preceded by a phase of

extensive erosion associated with lithospheric extension and crus-

tal rupture.

The Lower Paleozoic sandstone flanking the ANS represents a

fluviatile environment that grades laterally and vertically in Jordan

and Israel into a marine environment represented by the Burg

limestone. At the end of the Precambrian, therefore, the surface

of the ANS was mostly close to or above sea level, passing below

sea level to the north and northeast (present-day coordinates)

where continental crust of the newly formed EAO had a free ocean

face. High mountains, however, existed farther S in EAO, part of the

>8000-km-long and >1000-km-wide mountain chain (the Trans-

gondwanan Supermountain) that formed following the oblique

collision between eastern and western Gondwana (Squire et al.,

2006) and provided much of the clastic material of the Lower

Paleozoic sandstone.
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9.2.2. Cooling ages

Although unconformities are important indicators of exhuma-

tion and denudation, the timing of exhumation is best determined

by cooling ages. It is well known that faulting, among other pro-

cesses, is capable of unroofing mid-crustal rocks. A hallmark of

such unroofing is the resetting of footwall rocks to a common iso-

topic age reflecting cooling as the hangingwall is stripped away. As

a consequence, low-temperature thermochronometry is a funda-

mental tool in identifying and dating exhumation (Stockli, 2005).

The principle is that the age determined reflects cooling below

the thermal blocking temperature of the rock or mineral being da-

ted, rather than the age of mineral growth during metamorphism

or the age of thermal resetting. In some cases, Rb–Sr and Sm–Nd

whole-rock or mineral ages are interpreted as cooling ages (see

examples in Appendix A). Most commonly, however, for the pur-

poses of research in the ANS, cooling ages are determined by
40Ar/30Ar dating of hornblende, white mica, and sometimes feld-

spar. Rapid cooling, the hallmark of exhumation, is inferred if

two minerals (commonly hornblende and white mica) extracted

from the same sample have similar cooling ages, the argument

being that for two minerals with different blocking temperatures

to have the same age means that the host rock rapidly cooled

and was therefore rapidly exhumed. The present Arabian–Nubian

Shield 40Ar/30Ar age dataset includes 23 cooling ages (Table 1);

other 40Ar/30Ar ages reflect thermal resetting or prograde meta-

morphism. The cooling ages spread between about 620 and

555 Ma with peaks at 575–580 Ma and 595–600 Ma (note that

the ages shown in Fig. 27 designate the age at the beginning of

each 5 million-year bin).

As indicated in Fig. 27, the main period of cooling and exhuma-

tion in the ANS was between 600 and 575 Ma. However, some var-

iation occurs by region. Beyth et al. (2003) and Ghebreab et al.

(2005) determined that crust in northeastern Ethiopia and eastern

Eritrea underwent rapid exhumation between 640 and 545 Ma.

Gneisses in the Ghedem domain in eastern Eritrea have average

plateau ages of about 579 ± 6 Ma for hornblende and 567 ± 5 Ma

for white mica (Ghebreab et al., 2005) (Table 1). The gneisses

underwent peak metamorphism when P–T conditions were near

12 kbar and 650 °C at a depth of as much as 45 km. They subse-

quently rose to about 30 km and cooled at about 570 Ma, and fur-

ther rose and cooled at about 567 Ma (Ghebreab et al., 2005).

Exhumation was accomplished by extension on the low-angle

shear surfaces described above (Beyth et al., 2003; Ghebreab

et al., 2005). Final exhumation of Ethiopian and Eritrean crust

occurred during the Cenozoic due to deformation (rift-margin

uplift) related to the opening of the Red Sea. The same process of

rift-margin uplift affected crustal rocks of the ANS in Yemen, Saudi

Arabia, and Sinai. The crest of the Red Sea escarpment on both

flanks of the southern Red Sea, in Eritrea–Ethiopia, Yemen, and

southern Saudi Arabia is 2500–3000 m above sea level, and

Cenozoic uplift of this amount must be taken into consideration

whenestimatingend-PrecambrianexhumationofANScrustal rocks.

Basement rocks in northern Sinai were rapidly exhumed at

about 600 Ma (Cosca et al., 1999). Peak regional metamorphism oc-

curred in the mid-crust at about 620 Ma under P–T conditions of

7 ± 1 kbar (20–25 km depth) and 650–700 °C. Muscovite and bio-

tite from the Elat schist, Taba gneiss, Elat granite, and Elat granitic

gneiss record rapid exhumation and cooling at �600 Ma, synchro-

nous with widespread A-type igneous activity and a transition

from orogenic to post-orogenic tectonics reflecting large-scale

extension and tectonic escape (Cosca et al., 1999).

In the eastern Arabian Shield, rapid cooling is recorded by horn-

blende 40Ar/30Ar plateau ages of 612 ± 3, 611 ± 8, 610 ± 2, and

596 ± 6 Ma obtained from amphibolite and metagabbro in the Ar

Ridaniyah ophiolite mélange in the central part of the Ad Dawa-

dimi terrane. The ages reflect reactivation of the Ar Ridaniyah fault

and rapid exhumation of the mélange (Al-Saleh and Boyle, 2001).

To the south, a 40Ar/39Ar isochron age of 557 ± 15 Ma obtained

from biotite paragneiss in the Kirsh gneiss along the Ar Rika fault

zone is interpreted as the time of cooling below the biotite closure

temperature (Al-Saleh, 2010). The age reflects exhumation of the

gneiss and by implication, constrains the minimum age of develop-

ment of the Kirsh gneiss dome.

Regional cooling and exhumation in the Egyptian Central East-

ern Desert is constrained by Sm–Nd and Rb–Sr ages obtained from

biotite, hornblende gneiss, and amphibolite in the core of the Hafa-

fit dome (Abd El-Naby et al., 2008) and by 40Ar/30Ar hornblende

and muscovite ages obtained from the Hafafit, Sibai, and Meatiq

Domes (Fritz et al., 2002). The available data indicate that granite

gneiss in the Hafafit Dome with protolith crystallization ages of

682 Ma (Stern and Hedge, 1985), 698 Ma and 700 Ma (Kröner

et al., 1994), underwent amphibolite-facies metamorphism under

conditions of 600–750 °C and 6–8 kbar. Peak metamorphism was

attained at about 600 Ma or slightly earlier (Abd El-Naby et al.,

2008). Cooling after this peak is indicated by garnet, plagioclase,

and whole-rock Sm–Nd ages of 593 ± 4 Ma and 585 ± 8 Ma. A Rb–

Sr biotite and whole-rock age of 573 ± 6 Ma obtained from biotite

gneiss and 40Ar/39Ar hornblende plateau ages of 586 Ma and

Fig. 26. Unconformity at the contact between the Arabian Shield and Lower Paleozoic sandstone, represented by a low-relief erosion surface exposed in a cliff about 50 m

high about 25 km southwest of Al ‘Ula at the northern margin of the shield in Saudi Arabia. At this locality, the shield rocks comprise Cryogenian greenstone and plutonic

rocks belonging to the Midyan terrane. The Lower Paleozoic is sandstone and pebbly sandstone assigned to the Siq Sandstone. The shield rocks are deeply weathered for

several meters beneath the unconformity, and present as saprolite.
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584 Ma reflect further cooling and exhumation (Abd El-Naby et al.,

2008) possibly localized along northeast-trending extensional

faults (Fritz et al., 2002).

Hornblende 40Ar/39Ar plateau ages of 587 Ma, 583 Ma, 580 Ma,

and 579 Ma from the Um Ba’anib gneiss indicates contemporary

cooling and exhumation in the Meatiq Dome. Garnet-kyanite

metapelite in the Meatiq Dome underwent peak metamorphism

of �750 °C and 8 kbar (about 27 km depth). This was followed by

decompression to 4–5 kbar (13–17 km depth) (Neumayr et al.,

1998) with a 40Ar/39Ar muscovite age suggesting rapid cooling

and exhumation at about 583 Ma (Fritz et al., 2002). Muscovite

from strike-slip and extension shear zones on the west and south

of the Meatiq Dome yield plateau metamorphic ages of �588 Ma

and�595 Ma indicating slip on the shear zones contemporary with

583 Ma exhumation within the dome (Fritz et al., 1996).

The Sibai Dome, in contrast, appears to have been exhumed 30

million years earlier at about 623 Ma with late cooling during

exhumation and denudation after advective heating because of

granite intrusion at 606 Ma (Fritz et al., 2002).

9.3. Orogenic collapse

It is common to refer to orogenic collapse in the closing stages

of development of the ANS (Greiling et al., 1994; Fowler and El

Kalioubi, 2004; Tsige and Abdelsalam, 2005; Ghebreab, 1999). Col-

lapse occurs when lithostatic pressure exceeds rock strength limit-

ing isostatically compensated elevation. The elevation of mountain

belts (orogens) is determined by the balance between the force

generated by plate convergence (collision), which causes the stack-

ing of thrust sheets, buckling of rock sequences, crustal thickening,

and the rise of mountains, and the force of gravity. With respect to

the ANS, a pertinent question affecting the applicability of gravita-

tional collapse concerns the amount by which the ANS was ele-

vated above sea level at and after the peak of orogeny.

The P–T metamorphic conditions noted above suggest that a

mountain belt existed in the southern ANS at about 650 Ma, and

it is believed that this part of the ANS underwent rapid exhumation

by orogenic collapse on low-angle shear zones between 640 and

545 Ma (Beyth et al., 2003). In contrast, the presence of marine

post-amalgamation basins in the eastern ANS suggests that much

of this part of the ANS was at or below sea level soon after the

Nabitah orogeny peak deformation and metamorphism (680–

640 Ma). The low elevations in the eastern ANS may reflect weak

Ediacaran lithosphere due to largely molten lower crust (Stern

and Johnson, 2010) but, whatever the cause, it is noteworthy that

gravitational collapse has not been described from the eastern ANS.

Terrestrial Ediacaran deposits in the Eastern Desert and Sinai,

conversely, suggest that the western ANS had greater elevation

above sea level. It is therefore significant that published interpreta-

tions of gravitational collapse in the ANS are mostly reported from

these areas. Fowler and El Kalioubi (2004), for example, describe

the northwestward translation of intensely foliated ophiolite

mélange and molasse deposits west of the Meatiq Dome as a glid-

ing-spreading nappe caused by gravitational collapse following

arc-collision and crustal thickening. Blasband et al. (2000) ascribe

orogenic extension and collapse in the Wadi Kid area, Sinai, to

gravitational instability created during the final stages of arc-

accretion in the ANS.

A universal assumption of gravitational collapse in the ANS

needs to be treated with caution however. Thus Fritz et al.

(2002), discussing the same set of gneiss domes and molasse ba-

sins described by Fowler and El Kalioubi (2004) in terms of oro-

genic collapse, argue for exhumation of core complexes as the

result of oblique island-arc collision zones associated with trans-

pression and lateral extrusion. In this model, continuous magma-

tism weakened the crust and horizontal shortening was balanced

by extension, creating a situation in which there was no major

crustal thickening. It is envisaged that core complexes were contin-

uously but slowly exhumed without creating significant relief, so

there was no increase in potential energy and no gravitational col-

lapse. In a similar vein, derivation of post-collisional magma from

mantle sources is seen by Stern and Gottfried (1986) as indicating

asthenosphere uplift and removal of upper mantle lithosphere,

favoring orogenic extensional collapse (Dewey, 1988; Greiling

et al., 1994).

9.4. Indentor and escape tectonics

Another topic commonly referred to in late Cryogenian–Ediaca-

ran tectonic models for the ANS concerns orogenic collision or

indentation and consequent lateral extrusion or tectonic escape.

As described in Section 7.3 on the Najd fault system, the concept

derives from work by Tapponnier and Molnar (1976) and Molnar

and Tapponnier (1977) with regard to the indentation of Eurasia

by the Indian craton and the creation of strike-slip faults in the Ti-

betan Plateau. The idea was subsequently discussed by Burke and

Sengör (1986) who noted that buoyant continental or arc material

in orogenic belts generally moves during collision along strike-slip

shear zones toward a nearby oceanic margin or free face. The

indentor concept was first applied to the Arabian Shield by

Schmidt et al. (1979), who envisaged that the shield was indented

from the east by a rigid block in eastern Arabia, which caused

strike-slip deformation on the Najd fault system. Stern (1985) cau-

tioned that predictions of the model with regard to specific struc-

tures in the ANS fail, but the concept has become a commonly

accepted structural framework within which to analyze the

Fig. 27. 40Ar/39Ar cooling ages in the ANS. For sources of data, see Table 1.
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processes of late Cryogenian–Ediacaran crustal shortening and oro-

gen-parallel extension evident in the ANS. Berhe (1990) noted that

northwest-trending strike-slip faults (i.e. the Najd system) exist

throughout the ANS. It was inferred that they were the conse-

quence of oblique collision although some of the kinematic

assumptions were challenged by Abdelsalam and Stern (1991) in

a discussion on the Berhe (1990) paper. In the context of the entire

EAO, Bonavia and Chorowicz (1992) modeled the ANS as expelled

northward from the Mozambique Belt because of indentation of

East Africa by the Tanzanian craton. Jacobs and Thomas (2004) fur-

ther developed this concept and proposed that indenter-escape

tectonics on orogen parallel and orogen oblique shear zones oc-

curred in both southern Africa and the ANS during collision of east-

ern and western Gondwana to form the East African–Antarctic

Orogen. The existence of the East African–Antarctic Orogen as a

continuous tectonic entity is disputed because East Africa and

southern Africa are separated by an intervening E-trending oro-

genic belt (Hanson, 2003), and Collins and Pisarevsky (2005)

pointed out that instead, the EAO appears to bifurcate south of

Tanzania/Madagascar with one arm heading west into the Zambezi

Belt and the other heading into India. However, the concept that

ANS northward extrusion and southern African southward extru-

sion occurred during the final assembly of Gondwana is well

grounded. A complication, of course, is that early models of the

ANS being caught up in a hard collision between East and West

Gondwana and extruding northward are simplistic because East

Gondwana formed by a multiphase process of accretion and did

not exist as a coherent single crustal block (Meert, 2002). Another

complication is that not all orogen-parallel shear zones in the ANS

necessarily reflect northward extension. Tsige and Abdelsalam

(2005), for example, describe moderately E-dipping mylonitic

zones in the �100-km long north-trending Chulul shear zone in

southern Ethiopia, the southern part of the Bulbul shear zone that

have kinematic indicators showing top-to-the-SE tectonic trans-

port. This sense of displacement is orthogonal to the trend of the

EAO and is interpreted by Tsige and Abdelsalam (2005) in terms

of easterly directed detachment and gravitation tectonic collapse

rather than northward expulsion. The low-angle shear zones in Eri-

trea likewise reflect E–W gravity collapse between �580–565 Ma

rather than northward extension (Ghebreab, 1999; Ghebreab

et al., 2005). Nonetheless, gross northward late Cryogenian–Ediac-

aran extension and, by implication, tectonic escape is inferred for

the ANS on the basis of the sinistral sense of shear on the Keraf su-

ture (Abdelsalam et al., 1998) indicating northward flow of the ANS

relative to the Saharan Metacraton, the prevailing sinistral sense of

shear on faults of the Najd fault system, and the widespread devel-

opment of posttectonic dike swarms.

10. Gondwana assembly

Discussion about Gondwana assembly is not a prime objective

of this review, and is more extensively covered in a pending com-

panion review by Fritz and colleagues (this Journal). However, to

contextualize our comments about indentor and escape tectonics,

the development of the Abt formation and Al Amar arc, and the

assembly of the ANS and its accretion to the Saharan Metacraton,

we show a commonly accepted model of Gondwana assembly in

Fig. 28 (Collins and Pisarevsky, 2005) and a cartoon of ANS assem-

bly in Fig. 29, based on Fig. 28. The figures show that by 630 Ma,

the core terranes of the ANS had already amalgamated forming

the proto-Arabian–Nubian Shield (pANS), the Abt formation was

being deposited on the flank of or close to the pANS, and the Al

Amar arc was forming in what remained of the Mozambique

Ocean. Marine and terrestrial post-amalgamation basins existed

on the pANS, the region was being intruded by vast amounts of

granitoids, and the pANS had begun to converge with the Saharan

Metacraton. Between 620 and 580 Ma, the Al Amar arc and Abt for-

mation accreted to the pANS, the pANS accreted with the Saharan

Metacraton along the Keraf suture, and Ediacaran sedimentation

ceased. Oblique collision resulting from convergence of Neoprote-

rozoic India with the African parts of western Gondwana was fo-

cused in the southern part of the East African Orogen. This

caused the development of orogen-parallel shear and shortening

zones in the southern ANS, and transcurrent Najd faulting in the

northern ANS, the general effect of which was northward tectonic

escape. Exhumation of gneiss domes continued until �580 Ma;

granitoid magmatism continued until �565 Ma. The crystalline

basement of Eastern Arabia was in place by 540 Ma, prior to depo-

sition of the lower Paleozoic sandstone that covered the entire re-

gion during the mid-Cambrian. Available evidence indicates that

Eastern Arabia comprises juvenile Neoproterozoic rocks but as

mentioned earlier in this review, the provenance of these rocks is

uncertain—they may be an extension of the typical ANS or a sepa-

rate crustal unit. We juxtapose it with the ANS in Fig. 29 at 620–

550 Ma, and show the Al Amar arc, following Al-Husseini (2000),

on the leading edge of the East Arabian crust, but we show its posi-

tion at 630 Ma with a question mark because of the uncertainty of

where Eastern Arabia formed in relation to the ANS.

11. Summary

We conclude this review by outlining, within the limits of avail-

able data, a chronology of Late Cryogenian–Ediacaran events in 10

million-year increments. We aim to highlight the fact that the end-

Precambrian ANS continental crust was created by a large range of

interacting depositional, magmatic, and structural events, and that

any tectonic model for this period must account for contemporary

subsidence, magma generation, shearing and shortening, exhuma-

tion, and erosion associated with the final amalgamation of the

ANS terranes and collisional orogeny.

11.1. 650 Ma and earlier

By 650 Ma, most of the crust of the Arabian–Nubian Shield had

formed, especially in the south. The western oceanic arc terranes

had assembled along the Barka, Bi’r Umq–Nakasib, Yanbu–Sol

Hamed–Allaqi–Heiani and Nabitah sutures, and had sutured with

the Asir terrane along the Hulayfah–Ad Dafinah–Ruwah fault zone

during the Nabitah orogeny (680–640 Ma). For convenience, we re-

fer to this block of continental crust newly formed by terrane amal-

gamation as the proto-Arabian–Nubian Shield (pANS). Magmatism

associated with the Nabitah orogeny was characterized by syntec-

tonic gneisses emplaced along the Nabitah fault zone. The terrane

assemblage existed east of, but not yet in contact with, the Saharan

Metacraton (present coordinates), although oblique convergence

between the two, along the eventual Keraf suture, was probably

underway by 650 Ma. The northeastern margin of the pANS was

marked by the Halaban ophiolite (emplaced �680 Ma) and was

flanked by an ocean basin. Active subduction in this oceanic basin

was forming the Al Amar group (>689 Ma) and associated mag-

matic rocks (689–617 Ma) and oceanic sedimentation was forming

the Abt formation, but the Abt formation and Al Amar arc did not

accrete to the rest of the ANS for another 30 million years. Subduc-

tion beneath the pANS had probably largely ceased as a conse-

quence of terrane amalgamation and suturing although some

subduction, evidenced by continued convergence, shortening, and

orogeny continued for another 100 million years during final

assembly of the ANS. It is possible that delamination and sinking

of detached subducted slabs, following peak orogeny, perturbed

the mantle beneath the ANS crust facilitating the production of
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magmas and the phases of granitoid magmatism that character-

ized the remaining late Cryogenian–Ediacaran history of the ANS.

Within the newly formed continental crust of the pANS, exhuma-

tion, uplift, and erosion followed by subsidence formed post-amal-

gamation depositional basins, the oldest of which, within the time

frame of this review, comprised the terrestrial, intermontane Thal-

bah group (660–620 Ma).

11.2. 650–640 Ma

During this period, the northeastern part of the pANS was ex-

humed and eroded, revealing deep levels in the crust, and the crust

subsequently subsided, forming post-amalgamation basins, which

were filled by the Murdama group (650–625 Ma), in a foreland-

type of basin, and Bani Ghayy group (�650–620 Ma), in a

fault-controlled (graben?) basin. These rocks were deposited on a

profound regional unconformity that was developed across a large

part of the northeastern ANS and accumulated in shallow-marine

environments because of a late Cryogenian marine incursion. The

Murdama and Bani Ghayy basins developed on the flank of and

east of the Nabitah mobile belt; a small intermontane basin devel-

oped along the axis of the mobile belt in the south, filled by the

Atura formation (<650 to >640 Ma). To the northwest, active

terrestrial deposition continued in the Thalbah basin. In the 650–

640 Ma period, furthermore, large parts of the eastern pANS

(Arabian Shield) were intruded by calc-alkaline magma exempli-

fied by suites of TTG and granite plutons such as the Laban com-

plex (650 ± 7 Ma) in the Ha’il terrane, early phases of the Haml

batholith, intrusions in the Siham arc (Jidh suite), and monzogra-

nite–syenogranite plutons in the Asir terrane. Few plutonic rocks

of this age are known in the Nubian shield. The plutons are largely

undeformed and reflect the onset of posttectonic magmatism that

characterized the remaining history of the pANS. Exceptions in-

clude a �649 Ma biotite granite in Ethiopia, a �647 Ma granite

along the future Ar Rika shear zone, and a �640 Ma granite and

diorite in Sinai that were subsequently deformed and converted

into gneiss (Bielski, 1982; Kröner et al., 1990). Minor late syntec-

tonic magmatism along the Nabitah fault zone marked the waning

Nabitah orogeny (e.g., the Makhdhul quartz diorite gneiss

641 ± 3 Ma and the Tathlith gneiss 639 ± 6 Ma). This period wit-

nessed the earliest orogenic gold mineralization in the ANS, with

the formation of deposits at Ad Duwayhi (�650 Ma). Deposition

of the Abt formation and on-going arc-magmatism in the Ar Rayn

terrane were active in the oceanic domain east of the pANS.

Deformation, reflecting bulk E–W shortening, commenced on the

north-trending Hamisana (660–550 Ma) and Oko (700–560 Ma)

shear zones and fold belts in the southern ANS. Oblique sinistral

convergence continued along the Keraf suture.

11.3. 640–630 Ma

This period was marked by continuing subduction in the oce-

anic basin east of the pANS, with a peak in TTG magmatism in

the Al Amar arc, and by ongoing oblique convergence between

the pANS and the Saharan Metacraton along the Keraf suture

(Fig. 27). Metamorphism and deformation continued along short-

ening zones in the southern ANS. Marine environments persisted

in post-amalgamation basins in the eastern ANS until about 625–

620 Ma with continued deposition of the Murdama and Bani Ghayy

groups. Folding and uplift of these deposits may have started soon

after 630 Ma, resulting in a period of erosion that formed the regio-

nal unconformities on which the terrigenous and volcanic succes-

sions of the Hibshi, Hadn, and Jurdhawiyah units were

subsequently deposited. The Hibshi formation (632 Ma) was prob-

ably deposited in a fault-controlled basin at the northern margin of

the Murdama basin; the Hadn and Jurdhawiyah were deposited

some 15 million years later. Marine connections were maintained

in the heart of the pANS however, as evidenced by thick limestone

in the Ablah group (640–615 Ma) of southern Arabia. Exhumation

and brittle reactivation, forming small terrestrial molasse basins

along the Nabitah fault zone, followed the emplacement of

�640 Ma posttectonic granites. Voluminous calc-alkaline magma-

tism occurred in the northern and northeastern ANS (Aqaba com-

plex 640–600 Ma and Marabit suite 635–580 Ma in the Midyan

terrane; Khishaybi suite �640 Ma in the Afif terrane). Protoliths

of the Um Ba’anib gneiss (631 ± 2 Ma) were emplaced in what

would become the heart of the Meatiq Dome. The age of the Um

Ba’anib gneiss constrains the maximum age of ductile deformation

and the onset of northwesterly thrusting and tectonic transport in

the Eastern Desert. This was broadly contemporary with the onset

of shearing on the Qazaz–Ajjaj shear zone, evidenced by thermal

resetting of the Raydan pluton (630 ± 19 Ma) and ductile deforma-

tion in the Thalbah group (<620 Ma). Orogenic gold mineralization

continued, forming the An Najadi deposit in the Afif terrane

(�631 Ma), associated with the posttectonic calc-alkaline magma-

tism that was widespread in the northeastern Arabian Shield.

11.4. 630–620 Ma

Posttectonic A-type granites were emplaced in the ANS as early

as the middle Cryogenian (Hamra and Bishah plutons, �686 Ma

and �678 Ma), but the first major pulse of alkali magmatism oc-

curred between 630 and 620 Ma, with the emplacement of plutons

in the southern (Asir terrane) and northern (Afif and Midyan terr-

anes) ANS. These granites marked the onset of highly fractionated

intraplate, posttectonic magmatism and the beginning of a transi-

tion from convergent to extensional tectonics that characterized

the remaining ANS history. The geographic spread of alkaline

magmawas limited, however, and there is no record of A-typemag-

matism at this time in the Eastern Desert or Sinai. Concurrent calc-

alkaline magmatism in the Ar Rayn terrane reflected ongoing

subduction in theoceanicdomaineast of thepANS.Within thepANS,

subaerial volcanism occurred in the Shammar group (�630–

625 Ma), spatially associated with and the possible extrusive equiv-

alents of alkali-feldspar granites. Deposition of the Murdama and

Bani Ghayy groups in the marine post-amalgamation basins in the

eastern ANS ceased during this period. Oblique convergence along

the Keraf suture occurred, as did deformation on shortening zones

in the southern ANS and transcurrent shearing began on the princi-

pal Najd faults in the northern ANS—the Halaban-Zarghat, Ar Rika,

and Ruwah fault zones, indicating that transpressive E–W shorten-

ing and N–S orogen-parallel extension was pervasive in the pANS

at this time. The Sibai gneiss dome was exhuming and cooling by

about 623 Ma, reflecting the onset of Najd-related extension in the

Eastern Desert; other gneiss domes in the Eastern Desert were

exhumed in the following 30 million years.

11.5. 620–610 Ma

Significant posttectonic calc-alkaline magmatism continued

during this period in parts of the Afif (Idah suite: 620–615 Ma),

Asir, Midyan, and Hijaz terranes in the Arabian Shield, in Sinai,

and in the Eastern Desert of Egypt. The Idah suite was associated

with gold mineralization at Sukhaybarat (617 Ma). Magmatism

was followed by exhumation and erosion, particularly in the north-

eastern Arabian Shield. Transcurrent slip on the Halaban-Zarghat

and Ar Rika fault zones and the Qazaz and Ajjaj shear zones contin-

ued, as did transpressional sinistral convergence on the Keraf su-

ture and deformation on shear zones and shortening zones in the

southern ANS. Metamorphism of the Abt formation between 621

and 618 Ma (indicated by 40Ar/39Ar dating) is evidence of faulting

and exhumation in parts of Abt basin. These events likely marked
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the cessation of deposition in the basin, the onset of basin closure,

and the beginning of the process that would eventually lead to the

suturing of the Ad Dawadimi and Ar Rayn terranes and their amal-

gamation with the pANS. These tectonic events in the eastern ANS

were contemporary with ongoing collision along the Keraf suture

betweeen the ANS and Saharan Metacraton, and with tectonic es-

cape in the core of the ANS. TTG calc-alkaline magmatism contin-

ued in the Al Amar arc until about 616 Ma, but following the

Fig. 28. Late Cryogenian–Ediacaran assembly of Gondwana, showing intense continent–continent collision between India and the Congo Craton in the East African part of the

East African Orogen and the position of the Arabian–Nubian shield with an oceanic free face allowing tectonic escape (indicated by arrow). Modified from Collins and

Pisarevsky (2005). Az = Azania; Kal = Kalahari craton; WA =West Africa; SF = Sao Francisco; Sah = Saharan Metacraton; RP = Rio de la Plata; Aus-Maw = Australia/Mawson

block; Ru = Ruker Terrane.

P.R. Johnson et al. / Journal of African Earth Sciences 61 (2011) 167–232 223



waning or cessation of subduction beneath the arc, posttectonic al-

kali-feldspar granite magmatism became important. Intermontane

molasse basins formed during this period in the western part of the

pANS, filled by terrestrial sediments of the Hammamat Group and

subaerial extrusives of the Dokhan Volcanics. The basins manifest

extension and the formation of pull-aparts in a part of the ANS ele-

vated above sea level and unaffected by marine influence. A major

metamorphic event occurred in Sinai at about 620 Ma, followed 20

million years later by exhumation and cooling, further marking the

transition from orogenic (compression) to post-orogenic (exten-

sion) tectonics.

11.6. 610–600 Ma

During this period, ductile deformation was active on the Qazaz,

Halaban-Zarghat, Ar Rika, and Ruwah faults, concurrent with ongo-

ing oblique convergence and orogen-parallel extension and tec-

tonic escape throughout the pANS. At the same time, contact

between the Saharan Metacraton and the pANS increased, with

ongoing sinistral transpression on the Keraf suture. Thermal

activity on the Hamisana and Oko shortening zones continued

until �550 Ma, indicating a persistence of E–W shortening, at least

in the southern ANS, until virtually the end of the Precambrian.

Further folding, low-grade metamorphism, and rapid exhumation

and cooling in the Abt basin, recorded by 40Ar/39Ar ages of

616 Ma, 612, 611, and 610 Ma, and the onset of alkali-feldspar

granite magmatism in the Al Amar arc (607–583 Ma) is believed

to mark closure of the Abt marine basin and suturing between

the Ad Dawdimi and Ar Rayn terranes. These events marked the

elimination of the marine basin that had existed east of the earlier

amalgamated pANS. Metamorphic rocks dating between 636 and

604 Ma, known from borehole intercepts east of the Ad Dawadimi

and Ar Rayn terranes, in the basement of central Arabia (Al-Husse-

ini, 2000, and references therein), were presumably also in place by

this time but it is not clear whether the crust represents exotic

material (part of eastern Gondwana?) or a continuation of juvenile

Neoproterozoic material. Active deposition of Dokhan Volcanics

and Hammamat Group rocks continued in terrestrial intermontane

and molasse basins in western pANS and correlative terrestrial

sedimentation and volcanism, represented by the Jurdhawiyah

group (612–594 Ma), occurred at the eastern margin of the pANS.

Further exhumation occurred in the Sibai gneiss dome and thrust-

ing and ductile deformation occurred around the Meatiq Dome

indicating major northwesterly tectonic transport at about

606 Ma. A different interpretation of the Abu Ziran diorite suggests

significant extension. Voluminous posttectonic calc-alkaline mag-

matism occurred in much of the ANS, including Sinai (610–600),

the Eastern Desert of Egypt, the Aswan area, Sabaloka, Ethiopia

and Eritrea, and the Arabian Shield. A-type magmatism in Sinai

and the Midyan and Eastern Desert terranes also occurred from

about 608 Ma onward. The A-type magmatism, as well as evidence

of rapid cooling and exhumation in Sinai at about 600 Ma, evi-

denced by 40Ar/39Ar dating, identifies pervasive post-collision

extension and orogenic collapse in the northern ANS.

11.7. 600–590 Ma

A-type magmatism continued at this time in Sinai, the Central

and Northern Eastern Desert, the Afif terrane, and Ar Rayn terrane.

Concurrent calc-alkaline magmatism included the emplacement of

monzogranite (�599 Ma) and monzodiorite (�598 Ma) in the Mid-

yan terrane, hornblende–biotite granites (�599, 598 Ma) in the

Saharan Metacraton; granites (�599–592 Ma) and quartz monzo-

nite (�595 Ma) in Sinai; and granite and monzonite in the Sabaloka

and Bayuda Desert area (�597, �591 Ma). Bimodal alkali-calcic to

alkali magmatism was represented by the Araba suite (�600–

560 Ma), the result of melting of metasomatized mantle followed

by shallow level feldspar-controlled fractionation in a rifting

(extensional) environment. Emplacement of dike swarms con-

strained the cessation of metamorphism and ductile deformation

and marked the onset of NW–SE directed extension in the northern

ANS. Pre- to syntectonic granites with protolith ages of �600 and

�597 Ma and a cooling age of �600 Ma indicate the timing of peak

metamorphism and deformation in the Atmur–Delgo terrane at the

contact with the Saharan Metacraton and of major collision along

the Keraf suture. Concurrent peak metamorphism at �593 Ma oc-

curred in Eritrea followed 15 million years later by exhumation

and orogenic collapse. Ductile deformation and thrusting in the

Meatiq Dome ceased by 590 Ma, constrained by emplacement of

the posttectonic Arieki granite (590 Ma), concurrent with waning

ductile deformation on Najd faults in the Arabian Shield. The Hafa-

fit Dome underwent peak metamorphism at about 600 Ma or

slightly earlier, followed by exhumation, cooling and extension be-

tween about 595 and 585 Ma. By �590 Ma, ductile shearing on

Najd faults in the Arabian Shield was ending; rapid exhumation

and cooling occurred at the southern end of the Halaban-Zargaht

Fig. 29. Cartoon showing amalgamation and final accretion of the Arabian–Nubian

Shield during the late Cryogenian and Ediacaran. Cartoon is based on the

paleogeography illustrated in the Gondwana assembly model by Collins and

Pisarevsky (2005) shown in Fig. 28.
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fault between �601 and �597 Ma, and the Ruwah fault zone was

intruded by posttectonic granite at about �592 Ma. Active deposi-

tion continued in intermontane basins in the western ANS, how-

ever, with formation of Dokhan Volcanic rocks until at least

�592 Ma and deposition of Hammamat sediments until

�585 Ma. The Hammamat Goup in the type Hammamat basin

was folded and overthrust by middle Cryogenian supracrustal

rocks prior to the emplacement of the posttectonic Um Had granite

at 596 Ma. The thrusting reflected bulk NE–SW shortening in the

Eastern Desert. A transition to brittle deformation on several of

the Najd faults marked the initiation of Jibalah group depositional

basins at extensional zones along the faults.

11.8. 590–580 Ma

During this period, ductile deformation in the ANS was confined

to Najd faults in the northwestern part of the Arabian Shield and

perhaps in Egypt. The Meatiq Dome was exhuming and cooling,

constrained by 40Ar/39Ar hornblende and white mica cooling ages

of 587 Ma and 579 Ma obtained from the Um Ba’anib Orthogneiss.

Exhumation affected the Hafafit Dome at about the same time with
40Ar/39Ar cooling ages between 593 Ma and 584 Ma following peak

metamorphism. Slip on much of the Halaban-Zarghat fault had

ceased by 588 Ma although deposition in extensional basins along

the fault persisted and the Jibalah group continued to accumulate

until about 565 Ma. Felsite emplaced at 587 Ma in already folded

Abt formation confirms that the Abt basin was fully closed. Alka-

li-feldspar magmatism ceased in the Ar Rayn terrane but emplace-

ment of strongly fractionated peralkaline, peraluminous, and

related leucocratic granites continued at high levels in the crust

elsewhere in the northeastern ANS and Sinai. Granites locally

vented as rhyolitic flows and pyroclastic rocks.

11.9. 580–570 Ma

Ductile deformation and sinistral shearing occurred on the Qa-

zaz–Ajjaj shear zones until 575 Ma, but ceased by 573 Ma, the age

of posttectonic mafic dikes that intrude the shear zone. A final duc-

tile deformation event on the Halaban-Zarghat fault zone is indi-

cated by granite gneiss emplaced at 573 Ma, and alkali-feldspar

granites intruded into the Abt formation denote a late Ediacaran

phase of A-type magmatism (579–55 Ma) in the eastern ANS. Ra-

pid exhumation and cooling on the Keraf suture (577 Ma) is taken

as evidence that the pANS was almost fully accreted, at this time,

to the Saharan Metacraton; which implies that assembly of the

ANS was virtually complete. Rapid exhumation in Ghedem domain,

Eritrea (40Ar/39Ar ages �579 and �567 Ma) denotes ongoing oro-

genic collapse.

11.10. 570–560 Ma

During this period, Jibalah group deposition came to an end.

Much of the group was deposited in terrestrial environments, but

a late Ediacaran marine incursion is evidenced in the northern part

of the ANS.

11.11. 560–550 Ma

Terminal exhumation on the Ar Rika fault, shown by 40Ar/39Ar

cooling ages, occurred about 557 Ma, and orognic activity on the

Keraf suture ceased by 560 Ma. Thus, by 560–550 Ma, orogeny in

the ANS had ceased. The ANS thereafter underwent pervasive

extension, as is indicated by the widespread emplacement of dike

swarms until at least 545 Ma. By the end of the Ediacaran, the en-

tire ANS had been subjected to strong chemical weathering and

erosion, possibly in part effected by glaciation, and formed a vast

low-relief erosion surface on which Lower Cambrian sandstone

was eventually deposited.
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