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Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I 
 
1.1  Free Undamped Vibration 
 
The basic type of response of multi-degree-of-freedom systems is free undamped 
vibration. Analogous to single degree of freedom systems the analysis of free 
vibration yields the natural frequencies of the system. For the analysis, the elastic 
(restoring) properties of the system must be described first. This can either be done 
in terms of stiffness or flexibility 
 
Structural Stiffness 
 
Stiffness of a structure is described by the stiffness matrix, whose elements ijk  are 
defined as the force acting at node i, in order to produce a sole unit displacement at 
node j. In “lumped mass” models, the stiffness constants defined above are identical 
to the stiffness used in static models 

 
Example - Multi-storey “shear” building 
 
A shear building is one where the resistance to lateral loads is from the bending of 
the columns – the floors are infinitely rigid – and the columns are fixed-ended where 
connected to the floors.  

 
Fig. 1.1 Multi Storey Shear Building 
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The basic stiffness constant for a column subjected to shear only is 312
l
EIk = , 

where EI is the bending stiffness of the column and l  is the column length. The 
assembly of the stiffness matrix is performed one element at a time, with each floor 
of the building sequentially subjected to a unit shear displacement and the 
stiffnesses added as appropriate. e.g. the stiffness element for the first floor of the 
shear building in Fig. 1.1, due to a unit displacement of the first floor is:  
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(the ‘2’ multiplier is for 2 columns per storey) 
 

The full stiffness matrix for the 3-storey shear building is: 
 

 

3
3

3
333

3

3
3231

3
3

3
233

3

3
3

2

2
223

2

2
21

133
2

2
123

2

2
3

1

1
11

1221220

122122122122

0122122122

ll

llll

lll

EIkEIkk

EIkEIEIkEIk

kEIkEIEIk

∗=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗=∗+∗=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗=∗+∗=

 

 
Note: - the matrix is diagonally symmetric ( 2112 kk = ) 
 
 

Static Condensation  
 
This is the term given to the simplification of a stiffness matrix through the 
elimination of degrees of freedom. For example, in most buildings and structures 
exposed to lateral loads, there are no significant external moments or mass moment 
of inertia acting in the joints. Therefore the joint rotations can be eliminated from the 
governing equations, so the deformation of the structure can be expressed in terms 
of lateral displacements only. 
 
Considering the full 4x4 stiffness matrix for the column shown below, the elements 
can be assembled one degree of freedom at a time. We shall see how this can be 
simplified using Static Condensation. 



CEE490b    
 

  Page 1-3 

Recall the stiffness characteristics of a fixed ended beam: 
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 a) b) a)  b) 
Fig. 5.2  a) Generation of full stiffness matrix (4x4) and b) Condensed (2x2) 
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Assembling the elements of the complete stiffness matrix, we obtain: 
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Now, if only static horizontal forces P1,2 act, the matrix equation relating the input 
forces to the output displacements and rotations is: 
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or, generally: 
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note that the lower part of the equation: 

 
 { } [ ] { } [ ]{ }ψCuB T +=0   
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 yields the rotations: 
   

 { } [ ] [ ] { }uBC T1−−=ψ  
 
 then substituting this expression for the unknown rotations in terms of the 

unknown displacements into the upper part of the equation: 
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 the Condensed Stiffness Matrix is then: 
 
  [ ] [ ] [ ][ ] [ ]( )TBCBAk 1−−=′  
 

 In this case, it is a n x n matrix, where n is the number of translational degrees of 
freedom (in this case a 2 x 2 matrix)  involving translations only. If the rotations 
are desired, it is a simple matter to insert the resulting displacements into the 
known relationship between displacement and rotation. 
 

Governing Equations for the Solution to the Free Vibration Problem in 
n Degrees-of-Freedom 
 
With the stiffness constants defined, the governing equations of motion can be 
written using Newton’s Second Law for each of the masses in the system: 

 
i.e. ∑=∗ mass the on acting forcesonaccelerati mass  
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Then for mass im , in general for j = 1,2…n where n is the number of the degrees of 

freedom: 
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 This is a set of simultaneous, ordinary differential equations of the second order. 

This can be written in matrix form: 
 
  [ ]{ } [ ]{ } { }0=+ ukum &&       (1.2) 
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 The displacement vector is a column matrix: 
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and the symmetrical stiffness matrix [k] is: 
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As in the single degree of freedom case, the particular solution is: 
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In which { }u  is the column vector of amplitudes, which are independent of time. 
Subsituting equation (1.3) into equation (1.2), yields: 

 
  [ ] { } [ ]{ } { }0sinsin2 =+− tuktum ωωω &&  
 

The column vector of amplitudes is: 
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This is a homogeneous algebraic equation for iu , where the frequency, ω  is 
unknown. This is called the “Eigenvalue Problem” The solution to the Eigenvalue 
Problem utilizes the basic properties of homogeneous algebraic equations which 
imply that the roots (unknowns) are nontrivial (i.e. not equal to zero) only if the 
determinant of the coefficients vanishes.  
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The roots of this equation are non-zero only if the determinant is zero. i.e.: 
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 if 2/1 ωλ =  and we pre-multiply by [ ] 1−− kλ , then: 
 

  
[ ] [ ] [ ] [ ]( ){ } { }
[ ] [ ] [ ]( ){ } { }0

0
1

11

=+−

=+−
−

−−

umk

umkkk

Iλ

λ
 

 
where [ ]I  is the Identity Matrix. A non-trivial solution only exists if the 
determinant is equal to zero: 
 
 [ ] [ ] [ ] 01 =+− − mkIλ  
 

To find the values of λ  which satisfy this equation results in a set of unique 
Eigenvalues or Natural Frequencies. After the Eigenvalues have been determined, 
they are substituted back into the Homogeneous Equation involving { }u . For each 
value of λ  (recall that 2/1 ωλ = ) or natural frequency, a complete set of 
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dimensionless displacements are obtained, one for each degree of freedom. There 
are the mode shapes associated with each mode of vibration, called Eigenvectors. 

 
In our two-degree of freedom “flagpole” problem, the solution of these equations 
results in a closed-form solution for 2ω , as follows: 
 
Recall that we now have a 2x2 Condensed Stiffness Matrix, [ ]k ′ , and the equation 
for the characteristic determinant: 

 
  [ ] [ ] 02 =−′ mk ω  
  
 
 becomes: 

 

 02
22221

12
2

111 =
−′′
′−′

ω
ω

mkk
kmk  

 
the determinant is then a quadratic equation in 2ω : 
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the solution of which is: 
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With each frequency, the amplitude ratios, or mode shapes can be calculated from: 
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This results in two equations and two unknowns: 
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if we define the relative displacement as 
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Both of these equations must yield the same answer, which acts as a check on the 
resulting mode shapes. With more degrees-of-freedom than two, it is desirable to 
use a computer to solve the problem. 

 
 
 
 
   


