$\qquad$

## CHAPTER 4-CMOS SUBCIRCUITS

## Chapter Outline

4.1 MOS Switch
4.2 MOS Diode/Active Resistor
4.3 Current Sinks and Sources
4.4 Current Mirrors
4.5 Current and Voltage References
4.6 Bandgap Reference

Goal
To develop an understanding of the sub-blocks and subcircuits used in CMOS analog circuit design.

## Design Hierarchy




## Illustration of Hierarchy in Analog Circuits for an Op Amp



## SECTION 4.1 - MOS SWITCH

## Model for a Switch

- An ideal switch is a short-circuit when ON and an open-circuit when OFF.
- Actual switch:

$V_{C}$ is the controlling terminal for the switch ( $V_{C}$ high $\Rightarrow$ switch $\mathrm{ON}, V_{C}$ low $\Rightarrow$ switch OFF)
$r_{o n}=$ resistance of the switch when ON
$r_{o f f}=$ resistance of the switch when OFF
$V_{O S}=$ offset voltage when the switch is ON
$I_{A}$ and $I_{B}$ are leakage currents to ground
$I_{\text {off }}=$ offset current when the switch is OFF
$C_{A}$ and $C_{B}$ are terminal capacitances to ground
$C_{A C}$ and $C_{B C}$ are the parasitic capactiors between the control terminal and the switch terminals

$$
1-
$$

## MOS Transistor as a Switch



On Characteristics of a MOS Switch
Assume operation in active region ( $\mathrm{v}_{\mathrm{DS}}<\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$ ) and $\mathrm{v}_{\mathrm{DS}}$ small.
$i_{D}=\frac{\mu C_{o x} W}{L}\left[\left(v_{G S}-V_{T}\right)-\frac{v_{D S}}{2}\right] v_{D S} \approx \frac{\mu C_{o x} W}{L}\left(v_{G S}-V_{T}\right) v_{D S}$

Thus,

$$
\mathrm{R}_{\mathrm{ON}} \approx \frac{\mathrm{v}_{\mathrm{DS}}}{\mathrm{i}_{\mathrm{D}}}=\frac{1}{\frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{\mathrm{~L}}\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)}
$$

OFF Characteristics of a MOS Switch
If $\mathrm{v}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T}}$, then $\mathrm{i}_{\mathrm{D}}=\mathrm{IOFF}=0$ when $\mathrm{vDS} \approx 0 \mathrm{~V}$.
If $v_{D S}>0$, then

$$
\mathrm{R}_{\mathrm{OFF}} \approx \frac{1}{\mathrm{i}_{\mathrm{D}} \lambda}=\frac{1}{\mathrm{I}_{\mathrm{OFF}} \lambda} \approx \infty
$$

## MOS Switch Voltage Ranges

If a MOS switch is used to connect two circuits that can have analog signal that vary from 0 to 5 V , what must be the value of the bulk and gate voltages for the switch to work properly?


- To insure that the bulk-source and bulk-drain pn junctions are reverse biased, the bulk voltage must be less than the minimum analog signal for a NMOS switch.
- To insure that the switch is on, the gate voltage must be greater than the maximum analog signal plus the threshold for a NMOS switch.
Therefore:

$$
V_{\text {Bulk }} \leq 0 \mathrm{~V}
$$

and

$$
V_{\text {Gate }}(\text { on })>5 \mathrm{~V}+V_{T}
$$

Also, $\quad V_{\text {Gate }}($ off $) \leq 0 \mathrm{~V}$
Unfortunately, the large value of reverse bias bulk voltage causes the threshold voltage to increase.

## Current-Voltage Characteristics of a NMOS Switch

The following simulated output characteristics correspond to triode operation of the MOSFET.


SPICE Input File:
MOS Switch On Characteristics M1 1203 MNMOS W=3U L=3U
.MODEL MNMOS NMOS VTO $=0.75, \mathrm{KP}=25 \mathrm{U}$,
$+\mathrm{LAMBDA}=0.01, \mathrm{GAMMA}=0.8 \mathrm{PHI}=0.6$
VDS 10 DC 0.0

VGS 20 DC 0.0
VBS 30 DC - 5.0
.DC VDS -1 10.1 VGS 2101
.PRINT DC ID(M1)
.PROBE
.END

## MOS Switch ON Resistance as a Function of Gate-Source Voltage



SPICE Input File:
MOS Switch On Resistance as a $\mathrm{f}(\mathrm{W} / \mathrm{L})$
M1 1200 MNMOS W=3U L=3U
M2 $1200 \mathrm{MNMOS} \mathrm{W}=15 \mathrm{U} \mathrm{L}=3 \mathrm{U}$
M3 1200 MNMOS W=30U L=3U
M4 1200 MNMOS $W=150 \mathrm{U} \mathrm{L}=3 \mathrm{U}$
.MODEL MNMOS NMOS VTO $=0.75, \mathrm{KP}=25 \mathrm{U}$,
$+\mathrm{LAMBDA}=0.01, \mathrm{GAMMA}=0.8, \mathrm{PHI}=0.6$
VDS 10 DC 0.001 V
VGS 20 DC 0.0
.DC VGS 150.1
.PRINT DC ID(M1) ID(M2) ID(M3) ID(M4)
.PROBE
.END

## Influence of the ON Resistance on MOS Switches

Finite ON Resistance:


Example
Initially assume the capacitor is uncharged. If $V_{\text {Gate }}(\mathrm{ON})$ is 5 V and is high for $0.1 \mu \mathrm{~s}$, find the $\mathrm{W} / \mathrm{L}$ of the MOSFET switch that will charge a capacitance of 10 pF in five time constants.

## Solution

The time constant must be equal to $\frac{100 \mathrm{~ns}}{5}=20 \mathrm{~ns}$. Therefore $R_{O N}$ must be less than $\frac{20 \mathrm{~ns}}{10 \mathrm{pF}}=2 \mathrm{k} \Omega$. The on resistance of the MOSFET (for small $v_{D S}$ ) is

$$
R_{O N}=\frac{1}{K_{N}^{\prime}(W / L)\left(V_{G S} V_{T}\right)} \quad \Rightarrow \quad \frac{W}{L}=\frac{1}{R_{O N} \cdot K_{N}{ }^{\prime}\left(V_{G S} V_{T}\right)}=\frac{1}{2 \mathrm{k} \Omega \cdot 110 \mu \mathrm{~A} / \mathrm{v}^{2} \cdot 4.3}=1.06
$$

## Comments:

- It is relatively easy to charge on-chip capacitors with minimum size switches.
- Switch resistance is really not constant during switching and the problem is more complex than above.


## Including the Influence of the Varying On Resistance

## Gate-source Constant



$$
\begin{aligned}
& \left.g_{O N}(t)=\frac{K^{\prime} W}{L}{ }_{[ }\left(v_{G S}(t)-V_{T}\right)-v_{D S}(t)\right] \\
& g_{O N(\text { aver. })}=\frac{1}{r_{O N(\text { aver. })}} \approx \frac{g_{O N}(0)+g_{O N}(\infty)}{2} \\
& =\frac{K^{\prime} W}{2 L}\left(V_{G S^{-}} V_{T}\right)-\frac{K^{\prime} W V_{D S}(0)}{2 L}+\frac{K^{\prime} W}{2 L}\left(V_{G S^{-}} V_{T}\right) \\
& =\frac{K^{\prime} W}{L}\left(V_{G S^{-}} V_{T}\right)-\frac{K^{\prime} W V_{D S^{\prime}}(0)}{2 L}
\end{aligned}
$$

Gate-source Varying


Fig. 4.1-8

$$
g_{O N}=\frac{K^{\prime} W}{2 L}\left[V_{G S}(0)-V_{T}\right]-\frac{K^{\prime} W V_{D S}(0)}{2 L}+\frac{K^{\prime} W}{2 L}\left[V_{G S}(\infty)-v_{I N}-V_{T}\right]
$$

## Switch ON Resistance Example

Assume that at $t=0$, the gate of the switch shown is taken to 5 V . Design the W/L value of the switch to discharge the $C_{1}$ capacitor to within $1 \%$ of its initial charge in 10ns. Use the MOSFET parameters of Table 3.1-2.

## Solution



Note that the source of the NMOS is on the right and is always at ground potential so there is no bulk effect as long as the voltage across $C_{1}$ is positive. The voltage across $C_{1}$ can be expressed as

$$
v_{C 1}(t)=5 \exp \left(\frac{-t}{R_{O N} C_{1}}\right)
$$

At $10 \mathrm{~ns}, v_{C 1}$ is $5 / 100$ or 0.05 V . Therefore,

$$
\begin{aligned}
& 0.05=5 \exp \left(\frac{-10^{-8}}{R_{O N} 10^{-11}}\right)=5 \exp \left(\frac{-10^{3}}{R_{O N}}\right) \Rightarrow \exp \left(G_{O N} 10^{3}\right)=100 \Rightarrow G_{O N}=\frac{\ln (100)}{10^{3}}=0.0046 \mathrm{~S} \\
& \therefore \quad 0.0046=\frac{K^{\prime} W}{L}\left(V_{G S^{\prime}} V_{T}\right)-\frac{K^{\prime} W V_{D S^{(0)}}}{2 L}=\left(110 \times 10^{-6} .4 .3-\frac{110 \times 10^{-6} .5}{2}\right) \frac{W}{L}=198 \times 10^{-6} \frac{W}{L} \\
& \\
& \text { Thus, } \frac{W}{L}=\frac{0.0046}{198 \times 10^{-6}}=23.2 \approx 23
\end{aligned}
$$

## Influence of the OFF State on MOS Switches

The OFF state influence is primarily in any current that flows from the terminals of the switch to ground.
An example might be:


Typically, no problems occur unless capacitance voltages are held for a long time. For example,
$v_{\text {out }}(t)=v_{C H}\left[1-e^{-t /\left(R_{\text {Bulk }} C_{H}\right)}\right]$
If $R_{\text {Bulk }} \approx 10^{9} \Omega$ and $C_{H}=10 \mathrm{pF}$, the time constant is $10^{9} \cdot 10^{-11}=0.01$ seconds

## Influence of Parasitic Capacitances

The parasitic capacitors have two influences:

- Parasitics to ground at the switch terminals ( $C_{B D}$ and $C_{B S}$ ) add to the value of the desired capacitors.

This problem is solved by the use of stray-insensitive switched capacitor circuits

- Parasitics from gate to source and drain cause charge injection onto or off the desired capacitors.

This problem can be minimized but not eliminated.
Model for studying charge injection:


A simple switch circuit useful for studying charge injection.


A distributed model of the transistor switch.


A lumped model of the transistor switch. Fig. 4.1-11

## Charge Injection (Clock feedthrough, Charge feedthrough)

Charge injection is a complex analysis which is better suited for computer analysis. Here we will attempt to develop an understanding sufficient to show ways of reducing the effect of charge injection. What is Charge Injection?
1.) When the voltages change across the gate-drain and gate-source capacitors, a current will flow because $i=C \frac{d v}{d t}$.
2.) When the switch is off, charge injection will appear on the external capacitors $\left(C_{L}\right)$ connected to the switch terminals causing their voltages to change.


There are two cases of charge injection depending upon the transition rate when the switch turns off.
1.) Slow transition time.
2.) Fast transition time.

## Slow Transition Time

Consider the following switch circuit:

1.) During the on-to-off transition time from $A$ to $B$, the charge injection is absorbed by the low impedance source, $v_{i n}$.
2.) The switch turns off when the gate voltage is $v_{i n}+V_{T}$ (point B ).
3.) From B to C the switch is off but the gate voltage is changing. As a result charge injection occurs to $C_{L}$.

## Fast Transition Time

For the fast transition time, the rate of transition is faster than the channel time constant so that some of the charge during the region from point A to point B is injected onto $C_{L}$ even though the transistor switch has not yet turned off.


## A Quantized Model of Charge Injection

Approximate the gate transition as a stair case and discretize in voltage as follows:



The time constant of the channel, $R_{\text {channel }} C_{\text {channel }}$, determines whether or not the capacitance, $C_{L}$, fully charges during each voltage step.
${ }^{\dagger}$ B.J. Sheu and C. Hu, "Switched-Induced Error Voltage on A Switched Capacitor," IEEE J. Solid-State Circuits, Vol. SC-19, No. 4, pp. 519-525, August 1984.

## Analytical Expressions to Approximate Charge Injection

Assume the gate voltage is making a transition from high, $V_{H}$, to low, $V_{L}$.
$\therefore \quad v_{\text {Gate }}=v_{G}(t)=V_{H}-U t$
where

$$
U=\text { magnitude of the slope of } v_{G}(t)
$$

Define $V_{H T}=V_{H}-V_{S}-V_{T}$ and $\beta=\frac{K^{\prime} W}{L}$.
The error in voltage across $C_{L}, V_{\text {error }}$, is given below in two terms. The first term corrsponds to the feedthrough that occurs while the switch is still on and the second term corresponds to feedthrough when the switch is off.
1.) Slow transition occurs when $\frac{\beta V_{H T}^{2}}{2 C_{L}} \gg U$.

$$
V_{\text {error }}=-\left(\frac{W \cdot \mathrm{CGD} 0+\frac{C_{\text {channel }}}{2}}{C_{L}}\right) \sqrt{\frac{\pi U C_{L}}{2 \beta}}-\frac{W \cdot \mathrm{CGD} 0}{C_{L}}\left(V_{S}+2 V_{T}-V_{L}\right)
$$

2.) Fast transition occurs when $\frac{\beta V_{H T}^{2}}{2 C_{L}} \ll U$.

$$
V_{\text {error }}=-\left(\frac{W \cdot \mathrm{CGD} 0+\frac{C_{\text {channel }}}{2}}{C_{L}}\right)\left(V_{H T}-\frac{\beta V_{H T}^{3}}{6 U \cdot C_{L}}\right)-\frac{W \cdot \mathrm{CGD} 0}{C_{L}}\left(V_{S}+2 V_{T}-V_{L}\right)
$$

## Expression for Feedthrough when the Switch is OFF

The model for this case is given as:


The switch decrease from B to C is modeled as a negative step of magnitude $V_{S}+V_{T}-V_{L}$.
The output voltage on the capacitor after opening the switch is,

$$
v_{C L}=\left(\frac{C_{L}}{C_{O L}+C_{L}}\right) V_{S}-\left(\frac{C_{O L}}{C_{O L}+C_{L}}\right) V_{T}-\left(V_{S}+V_{T}-V_{L}\right)\left(\frac{C_{O L}}{\mathrm{C}_{O L}+C_{L}}\right) \approx V_{S}-\left(V_{S}+2 V_{T}-V_{L}\right)\left(\frac{C_{O L}}{C_{L}}\right)
$$

if $C_{O L}<C_{L}$.
Therefore, the error voltage is

$$
V_{\text {error }} \approx-\left(V_{S}+2 V_{T}-V_{L}\right)\left(\frac{C_{O L}}{C_{L}}\right)=-\left(v_{i n}+2 V_{T}-V_{L}\right)\left(\frac{C_{O L}}{C_{L}}\right)
$$

## Example 4.1-1 - Calculation of Charge Feedthrough Error

Calculate the effect of charge feedthrough on the previous circuit where $V_{S}=1 \mathrm{~V}, C_{L}=200 \mathrm{fF}, W / L=$ $0.8 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$, and $V_{G}$ is given below for the two cases. Use model parameters from Tables 3.1-2 and 3.2-1. Neglect $\Delta L$ and $\Delta W$ effects.


## Solution

Case 1:
The value of $U$ is equal to $5 \mathrm{~V} / 0.2 \mathrm{nS}$ or $25 \times 10^{9}$. Next we must test to see if the slow or fast transition time is appropriate. First calculate the value of $V_{T}$ as

$$
V_{T}=V_{T 0}+\gamma \sqrt{2\left|\phi_{F}\right|-V_{B S}}-\gamma \sqrt{2\left|\phi_{F}\right|}=0.7+0.4 \sqrt{0.7+1}-0.4 \sqrt{0.7}=0.887 \mathrm{~V}
$$

Therefore,

$$
V_{H T}=V_{H^{-}} V_{S^{-}} V_{T}=5-1-0.887=3.113 \mathrm{~V} \quad \Rightarrow \quad \frac{\beta V_{H T}^{2}}{2 C_{L}}=\frac{110 \times 10^{-6} \cdot 3.113^{2}}{2 \cdot 200 \mathrm{fF}}=2.66 \times 10^{9}<25 \times 10^{9}
$$

which corresponds to the fast transition case. Using the previous expression gives,

$$
V_{\text {error }}=-\left(\frac{176 \times 10^{-18}+0.5\left(1.58 \times 10^{-15}\right)}{200 \times 10^{-15}}\right)\left(3.113-\frac{3.32 \times 10^{-3}}{30 \times 10^{-3}}\right)-\frac{176 \times 10^{-18}}{200 \times 10^{-15}}(1+1.774-0)=-16.94 \mathrm{mV}
$$

## Example 4.1-1 - Continued

Case 2:
In this case $U$ is equal to $5 \mathrm{~V} / 10 \mathrm{~ns}$ or $5 \times 10^{8}$ which means that the slow transition case is valid $\left(5 \times 10^{8}<\right.$ $2.66 \times 10^{9}$ ).
Using the previous expression gives,

$$
V_{\text {error }}=-\left(\frac{176 \times 10^{-18}+0.5\left(1.58 \times 10^{-15}\right)}{200 \times 10^{-15}}\right)\left(\sqrt{\frac{314 \times 10^{-6}}{220 \times 10^{-6}}}\right)-\frac{176 \times 10^{-18}}{200 \times 10^{-15}}(1+1.774-0)=-8.21 \mathrm{mV}
$$

## Comment:

These results are not expected to give precise answers regarding the amount of charge feedthrough one should expect in an actual circuit. Rather, they are a guide to understand the effects of various circuit elements and terminal conditions in order to minimize unwanted behavior by design techniques.

## Solutions to Charge Injection

1.) Use minimum size switches to reduce the overlap capacitances and/or increase $C_{L}$.
2.) Use a dummy compensating transistor.


- Requires complementary clocks
- Complete cancellation is difficult and may in fact may make the feedthrough worse
3.) Use complementary switches (transmission gates)
4.) Use differential implementation of switched capacitor circuits (probably the best solution)


## Input-Dependent Charge Injection

Examination of the error voltage reveals that,
Error voltage $=$ Component independent of the input + Component dependent on the input
This only occurs for switches that are floating and is due to the fact that the input influences the voltage at which the transistor switches ( $v_{\text {in }} \approx V_{S} \approx V_{D}$ ). Leads to spurious responses and other undesired results.

Solution:
Use delayed clocks to remove the input-dependence by breaking the current path for injection from the floating switches.



Assume that $C_{S}$ is charged to $V_{i n}$ (both $\phi_{1}$ and $\phi_{1 \mathrm{~d}}$ are high):
1.) $\phi_{1}$ opens, no input-dependent feedthrough because switch terminals (S3) are at ground potential.
2.) $\phi_{1 d}$ opens, no feedthrough occurs because there is no current path (except through small parasitic capacitors).

## CMOS Switches (Transmission Gate)



Advantages:

- Feedthrough somewhat diminished
- Larger dynamic range
- Lower ON resistance

Disadvantages:

- Requires a complementary clock
- Requires more area


## Example 4.1-2 - Charge Injection for a CMOS Switch

Calculate the effect of charge feedthrough on the circuit shown below. Assume that $U=5 \mathrm{~V} / 50 \mathrm{~ns}=10^{8} \mathrm{~V} / \mathrm{s}, v_{\text {in }}=$ 2.5 V and ignore the bulk effect. Use the model parameters from Tables 3.1-2 and 3.2-1.

## Solution

First we must identify the transition behavior. For the NMOS transistor we have

$$
\frac{\beta_{N} V_{H T N}^{2}}{2 C_{L}}=\frac{110 \times 10^{-6} \cdot(5-2.5-0.7)^{2}}{2 \cdot 10^{-12}}=1.78 \times 10^{8}
$$

For the PMOS transistor, noting that


$$
V_{H T P}=V_{S}-\left|V_{T P}\right|-V_{L}=2.5-0.7-0=1.8
$$

we have $\frac{\beta_{P} V_{H T P}^{2}}{2 C_{L}}=\frac{50 \times 10^{-6} \cdot(1.8)^{2}}{2 \cdot 10^{-12}}=8.10 \times 10^{7}$. Thus, the NMOS transistor is in the slow transition and the PMOS transistor is in the fast transition regimes.
Error due to NMOS:

Error due to PMOS:

$$
V_{\text {error }}(\mathrm{PMOS})=\left(\frac{176 \times 10^{-18}+0.5\left(1.58 \times 10^{-15}\right)}{10^{-12}}\right)\left(1.8-\frac{50 \times 10^{-6}(1.8)^{3}}{6 \cdot 10^{8} \cdot 10^{-12}}\right)+\frac{176 \times 10^{-18}}{10^{-12}}(5+1.4-2.5)=1.956 \mathrm{mV}
$$

Net error voltage due to charge injection is $116 \mu \mathrm{~V}$. This will vary with $V_{S}$.

## Dynamic Range of the CMOS Switch

The dynamic range of a switch is the range of voltages at the switch terminals $\left(V_{A} \approx V_{B}=V_{A, B}\right)$ over which the ON resistance stays reasonably small.


Fig. 4.1-22
Spice File:
Simulation of the resistance of a CMOS transmission switch
M1 $1320 \mathrm{MNMOS} \mathrm{L}=2 \mathrm{U}$ W=50U
M2 1023 MPMOS L=2U W=50U
. MODEL MNMOS NMOS VTO $=0.75, \mathrm{KP}=25 \mathrm{U}, \mathrm{LAMBDA}=0.01$, $\mathrm{GAMMA}=0.5, \mathrm{PHI}=0.5$
. MODEL MPMOS PMOS VTO $=-0.75, \mathrm{KP}=10 \mathrm{U}, \mathrm{LAMBDA}=0.01$, GAMMA=0.5, $\mathrm{PHI}=0.5$
VDD 30
VAB 10
IA 20 DC 1 U
.DC VAB 050.02 VDD 450.5
.PRINT DC $\mathrm{V}(1,2)$
.END
Result:
Low on resistance over a wide voltage range becomes very difficult as the power supply decreases.

CMOS Switch with Twin-Well Switching


Circuit when $V_{\text {Control }}$ is in its high state.


Circuit when $V_{\text {Control }}$ is in its low state.


## Charge Pumps for Switches with Low Power Supply Voltages

As power supply voltages decrease below 3 V , it becomes difficult to keep the switch on at a low value of on-resistance over the range of the power supply. Consequently, charge pumps are used.

Charge pump circuit:


$$
\mathrm{V}_{\mathrm{hi}}=2 \mathrm{~V}_{\mathrm{DD}} \cdot \frac{\mathrm{C}_{2}}{\mathrm{C}_{\text {gate,NMOS switch }}+\mathrm{C}_{2}+\mathrm{C}_{\mathrm{L}}}
$$

## Charge Pump - Continued

High voltage generator for the well of M1:


Prevents latch-up of M1 by providing a high bulk bias (6.6V).

Use a separate clock driver for each switch to avoid crosstalk through the gate clock lines. Area for layout can be small.

## Simulation of the Charge Pump Circuit ${ }^{\dagger}$

Circuit:


Simulation:

${ }^{\dagger}$ T.B. Cho and R.R. Gray, "A 10b, 20 Msample/s, 35mW Pipeline A/D Converter," IEEE J. of Solid-State Circuits, Vol. 30, No. 3m March 1995, pp. 166-172.

Chapter 4 - Subcircuits (5/25/01) $\qquad$

CMOS Analog Circuit Design

## Summary of MOSFET Switches

- Symmetrical switching characteristics
- High OFF resistance
- Moderate ON resistance (OK for most applications)
- Clock feedthrough is proportional to size of switch (W) and inversely proportional to switching capacitors.
- Output offset due to clock feedthrough has 2 components:

Input dependent
Input independent

- Complementary switches help increase dynamic range.
- Fully differential operation should minimize the clock feedthrough.
- As power supply reduces, switches become more difficult to fully turn on.
- Switches contribute a kT/C noise which can get folded back into the baseband.


## SECTION 4.2 - MOS DIODE/ACTIVE RESISTOR

## MOS Diode

When the MOSFET has the gate connected to the drain, it acts like a diode with characteristics similar to a pnjunction diode.


Note that when the gate is connected to the drain of an enhancement MOSFET, the MOSFET is always in the saturation region.

$$
v_{D S} \geq v_{G S}-V_{T} \quad \Rightarrow \quad v_{D}-v_{S} \geq v_{G}-v_{S}-V_{T} \quad \Rightarrow \quad v_{D}-v_{G} \geq-V_{T} \quad \Rightarrow \quad v_{D G} \geq-V_{T}
$$

Since $V_{T}$ is always greater than zero for an enhancement device, then $v_{D G}=0$ satisfies the conditions for saturation.

- Works for NMOS or PMOS
- Note that the drain could be $V_{T}$ less than the gate and still be in saturation


## Large-Signal and Small-Signal Characteristics of the MOS Diode

Large-Signal Characteristics:
Ignore channel modulation-

$$
i=i_{D}=\frac{K^{\prime} W}{2 L}\left(v_{G S}-V_{T}\right)^{2}=\frac{\beta}{2}\left(v_{G S}-V_{T}\right)^{2} \text { and } v=v_{G S}=v_{D S}=V_{T}+\sqrt{\frac{2 i_{D}}{\beta}}
$$

Small-Signal Characteristics:
The small signal model is achieved by linearization of the large signal model at an operating point.

$$
\begin{aligned}
i_{D}= & \frac{\beta}{2}\left(v_{G S}-V_{T}\right)^{2}\left(1+\lambda v_{D S}\right) \rightarrow \quad v_{d}+I_{D}=\frac{\beta}{2}\left[v_{g s}+\left(V_{G S^{-}} V_{T}\right)\right]^{2}\left[1+\lambda\left(v_{d s}+V_{D S}\right)\right] \\
i_{d}+I_{D}= & \frac{\beta}{2} v_{g S}{ }^{2}+\boldsymbol{\beta}\left(\boldsymbol{V}_{\boldsymbol{G}} \boldsymbol{S}^{-} \boldsymbol{V}_{\boldsymbol{T}}\right) \boldsymbol{v}_{\boldsymbol{g s}}+\frac{\boldsymbol{\beta}}{\mathbf{2}}\left(\boldsymbol{V}_{\boldsymbol{G}} \boldsymbol{V}_{\boldsymbol{T}}\right)^{\mathbf{2}}+\frac{\beta}{2} v_{g s}{ }^{2} \lambda v_{d s}+\beta\left(V_{G S}-V_{T}\right) v_{g S} \lambda v_{d s} \\
& +\frac{\boldsymbol{\beta}}{\mathbf{2}}\left(\boldsymbol{V}_{\boldsymbol{G} \boldsymbol{S}^{-}} \boldsymbol{V}_{\boldsymbol{T}}\right)^{\mathbf{2}} \boldsymbol{\lambda} \boldsymbol{v}_{\boldsymbol{d s}}+\frac{\beta}{2} v_{g s}{ }^{2} \lambda V_{D S}+\beta\left(V_{G S^{-}} V_{T}\right) v_{g s} \lambda V_{D S}+\frac{\boldsymbol{\beta}}{\mathbf{2}}\left(\boldsymbol{V}_{\boldsymbol{G S}}-\boldsymbol{V}_{\boldsymbol{T}}\right)^{\mathbf{2}} \boldsymbol{\lambda} \boldsymbol{V}_{\boldsymbol{D S}}
\end{aligned}
$$

Assume that $v_{g s}<V_{G S} V_{T}, v_{d S}<V_{D S}$ and $\lambda \ll 1$. Therefore we write:

$$
\begin{array}{ll} 
& i_{d}+I_{D} \approx \beta\left(V_{G S^{-}} V_{T}\right) v_{\mathrm{gs}}+\frac{\beta}{2}\left(V_{G S^{-}} V_{T}\right)^{2} \lambda v_{d s}+\frac{\beta}{2}\left(V_{G S^{-}} V_{T}\right)^{2}\left(1+\lambda V_{D S}\right) \\
\therefore \quad & i_{d}=\beta\left(V_{G S^{-}} V_{T}\right) v_{\mathrm{gs}}+\frac{\beta}{2}\left(V_{G S^{-}} V_{T}\right)^{2} \lambda v_{d s}=g_{m} v_{g s}+g_{d s} v_{d s} \quad \text { and } \quad I_{D}=\frac{\beta}{2}\left(V_{G S^{-}} V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{array}
$$



## Application of the MOS Diode

DC resistor:

$$
\text { DC resistance }=\left.\frac{v}{i}\right|_{Q}=\frac{V}{I}
$$

- Useful for biasing - creating current from voltage and vice versa


Small-Signal Load (AC resistance):


AC resistance $=\frac{v_{d s}}{i_{d}}=\frac{1}{g_{m}+g_{d s}} \approx \frac{1}{g_{m}}$
where

$$
g_{m}=\beta\left(V_{G S^{-}} V_{T}\right)=\sqrt{2 \beta I_{D}} \quad \text { and } \quad g_{d s} \approx \frac{\beta}{2}\left(V_{G S^{-}} V_{T}\right)^{2} \lambda=I_{D} \lambda
$$

## Influence of the Back Gate (Bulk)

It can be shown that the small signal model for the MOSFET with the bulk not connected to the source is,

where

$$
\begin{aligned}
& g_{m b s} \text { is defined as }\left.\frac{\partial v_{D}}{\partial v_{B S}}\right|_{\mathrm{Q}}=\left.\left(\frac{\partial i_{D}}{\partial v_{G S}}\right)\left(\frac{\partial v_{G S}}{\partial v_{B S}}\right)\right|_{\mathrm{Q}}=\left(-\frac{\partial i_{D}}{\partial v_{T}}\right)\left(\frac{\partial v_{T}}{\partial v_{B S}}\right)_{\mathrm{Q}} \\
& g_{m b s}=\frac{g_{m} \gamma}{2 \sqrt{2\left|\phi_{F}\right|-V_{B S}}}=\eta g_{m}
\end{aligned}
$$

It is very useful to simplify the small signal model when possible. The following are reasonable guidelines for this simplification:

$$
g_{m} \approx 10 g_{m b s} \approx 100 g_{d s}
$$

## Example 4.2-1 - Small-Signal Load Resistance

Find the small signal resistance of the MOS diode shown using the parameters of Table 3.2-1.
Assume that the $W / L$ ratio is $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$.

## Solution

If we are going to include the bulk effect, we must first find the dc value of the bulk-source voltage. Unfortunately, we do not know the threshold voltage because the bulk-source voltage is unknown. The best approach is to ignore the bulk-source voltage, find the gate-source voltage and then iterate if necessary.

$\therefore V_{G S}=\sqrt{\frac{2 I}{\beta}}+V_{T 0}=\sqrt{\frac{2 \cdot 100}{110 \cdot 10}}+0.7=1.126 \mathrm{~V}$
Thus let us guess at a gate-source voltage of 1.3 V (to account for the bulk effect) and calculate the resulting gate-source voltage.

$$
V_{T}=V_{T 0}+\gamma \sqrt{2\left|\phi_{F}\right|-(-3.7)}-\gamma \sqrt{2\left|\phi_{F}\right|}=0.7+0.4 \sqrt{0.7+3.7}-0.4 \sqrt{0.7}=1.20 \mathrm{~V} \Rightarrow V_{G S}=1.63 \mathrm{~V}
$$

Now refine our guess at $V_{G S}$ as 1.6 V and repeat the above to get $V_{T}=1.175 \mathrm{~V}$ which gives $V_{G S}=1.60 \mathrm{~V}$.
Therefore, $V_{B S}=-3.4 \mathrm{~V}$.

## Example 4.2-1 - Continued

The small signal model for this example is shown.
The ac input resistance is found by,

$$
\begin{aligned}
& i_{a c}=g_{d s} v_{a c}-g_{m} v_{g s}-g_{m b s} v_{b s} \\
& =g_{d s} v_{a c}+g_{m} v_{s}+g_{m b s} v_{s}=v_{a c}\left(g_{m}+g_{m b s}+g_{d s}\right) \\
& \therefore r_{a c}=\frac{v_{a c}}{i_{a c}}=\frac{1}{g_{m}+g_{m b s}+g_{d s}}
\end{aligned}
$$



Now we must find the parameters which are,

$$
\begin{aligned}
& g_{m}=\sqrt{2 \beta I_{D}}=\sqrt{2 \cdot 110 \cdot 10 \cdot 100} \mu \mathrm{~S}=469 \mu \mathrm{~S}, g_{d s}=0.04 \mathrm{~V}^{-1} \cdot 100 \mu \mathrm{~A}=4 \mu \mathrm{~S} \\
& \text { and } g_{m b s}=\frac{469 \mu \mathrm{~S} \cdot 0.4}{2 \sqrt{0.7+3.4}}=0.0987 \cdot 469 \mu \mathrm{~S}=46.33 \mu \mathrm{~S}
\end{aligned}
$$

Finally,

$$
r_{a c}=\frac{10^{6}}{469+46.33+4}=1926 \Omega
$$

If we had used the previous approximations of $g_{m} \approx 10 g_{m b s} \approx 100 g_{d s}$, then we could have simply let

$$
r_{a c} \approx \frac{1}{g_{m}}=\frac{1}{469}=2132 \Omega
$$

Probably the most important result of this approximation is that we would not have to find $V_{B S}$ which took a lot of effort for little return.

## Applications of the MOS Diode for Biasing

1.) Deriving a bias voltage from power supply.

$$
I_{D 1}=I_{D 2} \quad \Rightarrow \quad \beta_{N}\left(V_{B i a s^{-}} V_{T N}\right)^{2}=\beta_{P}\left(V_{D D^{-}} V_{\text {Bias }^{-}}-\left|V_{T P}\right|\right)^{2}
$$

Solving for $V_{\text {Bias }}$ gives

$$
V_{\text {Bias }}=\frac{V_{T N}+\sqrt{\frac{\overline{\beta_{P}}}{\beta_{N}}\left(V_{D D^{-\mid} V_{T P} \mid}\right)}}{1+\sqrt{\frac{\beta_{P}}{\beta_{N}}}} \text { and } I_{D}=\beta_{N}\left(V_{B i a s}-V_{T N}\right)^{2}
$$



Fig. 4.2-7

Use the ratio of $\beta_{P} / \beta_{N}$ to design $V_{\text {Bias }}$ and the value of $\beta_{N}$ to design the current $I_{D}$.
2.) Deriving a bias voltage from a bias current.

$$
\begin{aligned}
V_{\text {Bias }} & =V_{G S 1}+V_{G S 2} \\
& =\sqrt{\frac{2 I_{\text {Bias }}}{\beta_{1}}}+V_{T 1}+\sqrt{\frac{2 I_{\text {Bias }}}{\beta_{2}}}+V_{T 2}
\end{aligned}
$$

Design $\beta_{1}$ and $\beta_{2}$ to yield the desired value of $V_{\text {Bias. }}$. Try to keep the values of $W / L$ as close to unity as possible to minimize area.


## Use of the MOSFET to Implement a Floating Resistor

In many applications, it is useful to implement a resistance using a MOSFET. First, consider the simple, single MOSFET implementation.

$$
R_{A B}=\frac{L}{K^{\prime} W\left(V_{G S}-V_{T}\right)}
$$




## Cancellation of Second-Order Voltage Dependence - Parallel MOSFETs

Circuit:


Assume both devices are non-saturated

$$
\begin{aligned}
& i_{D 1}=\beta_{1}\left[\left(v_{A B}+V_{C}-V_{T}\right) v_{A B}-\frac{v_{A B}}{2}\right] \\
& i_{D 2}=\beta_{2}\left[\left(V_{C}-V_{T}\right) v_{A B}-\frac{v_{A B}}{2}\right] \\
& i_{A B}= i_{D 1}+i_{D 2}=\beta\left[v_{A B}{ }^{2}+\left(V_{C}-V_{T}\right) v_{A B}-\frac{v_{A B}{ }^{2}}{2}+\left(V_{C}-V_{T}\right) v_{A B}-\frac{v_{A B}{ }^{2}}{2}\right] \\
& i_{A B}=2 \beta\left(V_{C}-V_{T}\right) v_{A B} \\
& R_{A B}=\frac{1}{2 \beta\left(V_{C}-V_{T}\right)}
\end{aligned}
$$

## Parallel MOSFET Performance

Voltage-Current Characteristic:


SPICE Input File:
NMOS parallel transistor realization
M1 2105 MNMOS W=15U L=3U
VDS 100
VSS 50 DC -5
M2 2405 MNMOS W=15U L=3U
.MODEL MNMOS NMOS VTO $=0.75, \mathrm{KP}=25 \mathrm{U}, \mathrm{LAMBDA}=0.01$, GAMMA $=0.8 \mathrm{PHI}=0.6$
VC 12
.DC VDS -2.0 2.0.2 VC 371 .PRINT DC I(VSENSE)

E1 40121.0 .PROBE

VSENSE 102 DC 0
Still have the influence of the bulk on the threshold voltage.

## Double MOSFET Differential Resistor

Cancels the bulk effect.


$$
\begin{aligned}
& i_{D 1}=\beta\left[\left(V_{C 1}-v-V_{T}\right)\left(v_{1}-v\right)-0.5\left(v_{1}-v\right)^{2}\right] \quad i_{D 2}=\beta\left[\left(V_{C 2}-v-V_{T}\right)\left(v_{1}-v\right)-0.5\left(v_{1}-v\right)^{2}\right] \\
& i_{D 3}=\beta\left[\left(V_{C 2}-v-V_{T}\right)\left(v_{2}-v\right)-0.5\left(v_{2}-v\right)^{2}\right] \quad i_{D 4}=\beta\left[\left(V_{C 1}-v-V_{T}\right)\left(v_{2}-v\right)-0.5\left(v_{2}-v\right)^{2}\right] \\
& \left.i_{1}=i_{D 1}+i_{D 3}=\beta\left[\left(V_{C 1^{-v-}} V_{T}\right) V_{1}-v\right)-0.5\left(v_{1}-v\right)^{2}+\left(V_{C 2^{-v}} V_{T}\right)\left(v_{2}-v\right)-0.5\left(v_{2}-v\right)^{2}\right] \\
& i_{2}=i_{D 2}+i_{D 4}=\beta\left[\left(V_{C 2}-v-V_{T}\right)\left(v_{1}-v\right)-0.5\left(v_{1}-v\right)^{2}+\left(V_{C 1}-v-V_{T}\right)\left(v_{2}-v\right)-0.5\left(v_{2}-v\right)^{2}\right] \\
& i_{1}-i_{2}=\beta\left[\left(V_{C 1}-v-V_{T}\right)\left(v_{1}-v\right)+\left(V_{C 2}-v-V_{T}\right)\left(v_{2}-v\right)+\left(V_{C 2}-v-V_{T}\right)\left(v_{1}-v\right)+\left(V_{C 1}-v-V_{T}\right)\left(v_{2}-v\right)\right] \\
& =\beta\left[v_{1}\left(V_{C 1}-V_{C 2}\right)+v_{2}\left(V_{C 2}-V_{C 1}\right)\right]=\beta\left(V_{C 1}-V_{C 2}\right)\left(v_{1}-v_{2}\right)
\end{aligned}
$$

Differential input resistance is

$$
R_{\text {in }}=\frac{v_{1}-v_{2}}{i_{1}-i_{2}}=\frac{v_{1}-v_{2}}{\beta\left(V_{C 1}-V_{C 2}\right)\left(v_{1}-v_{2}\right)}=\frac{1}{\beta\left(V_{C 1}-V_{C 2}\right)}, \quad v_{1}, v_{2} \leq \min \left\{\left(V_{C 1}-V_{T}\right),\left(V_{C 2^{-}}-V_{T}\right)\right\}
$$

## Double-MOSFET, Differential Resistor Performance



SPICE Input File:
Double MOSFET Differential Resistor Realization
M1 1234 MNMOS1 W=3U L=3U
M2 1584 MNMOS1 W=3U L=3U
M3 6534 MNMOS1 W=3U L=3U
M4 $6284 \mathrm{MNMOS} 1 \mathrm{~W}=3 \mathrm{U} \mathrm{L}=3 \mathrm{U}$
VSENSE 38 DC 0
VC1 20 DC 7V
VC2 50
VSS 40 DC -5V
V12 16
.MODEL MNMOS1 NMOS VTO $=0.75 \mathrm{KP}=25 \mathrm{U}$

+ LAMBDA $=0.01$ GAMMA $=0.8 \mathrm{PHI}=0.6$
.DC V12 -3 30.2 VC2 261
PRINT DC I(VSENSE))
.PROBE
.END

Comments:

- Good linearity and tunability.
- Can be used as a multiplier.

| Summary of Active Resistor Realizations |  |  |  |
| :---: | :---: | :---: | :---: |
| AC Resistance Realization | Linearity | How Controlled | Restrictions |
| Single MOSFET | Poor | $\mathrm{V}_{\mathrm{GS}}$ or W/L | vBULK $<\operatorname{Min}\left(\mathrm{v}_{\text {S }}, \mathrm{v}_{\text {d }}\right)$ |
| Parallel MOSFET | Good | $\mathrm{V}_{\mathrm{C}}$ or W/L | $\mathrm{v} \leq\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{T}}\right)$ |
| Double-MOSFET, differential resistor | Very Good | $\mathrm{V}_{\mathrm{C} 1}-\mathrm{V}_{\mathrm{C} 2}$ or W/L | $\begin{gathered} \mathrm{v}_{1}, \mathrm{v}_{2}<\min \left(\mathrm{V}_{\mathrm{C} 1}-\mathrm{V}_{\mathrm{T}},\right. \\ \left.\mathrm{V}_{\mathrm{C} 2}-\mathrm{V}_{\mathrm{T}}\right) \\ \mathrm{v}_{\mathrm{BULK}}<\min \left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \\ \text { Transresistance only } \end{gathered}$ |

## SECTION 4.3 - CURRENT SINKS AND SOURCES

## Characterization of Sinks and Sources

A sink/source is characterized by two quantities:

- $r_{\text {out }}$ - a measure of the "flatness" of the current sink/source (its independence of voltage)
- $V_{M I N}$ - the minimum across the sink or source for which the current is no longer constant CMOS Current Sink:


$$
r_{o u t}=\frac{1}{d i_{D} / d v_{D S}}=\frac{1+\lambda V_{D S}}{\lambda I_{D}} \approx \frac{1}{\lambda I_{D}}
$$

and

$$
V_{M I N}=V_{D S}(\mathrm{sat})=V_{G S}-V_{T 0}=V_{G G}-V_{T 0}
$$

## Simple Current Source



This current source only works when $v_{O U T} \leq V_{G G}+\left|V_{T 0}\right|$

## Gate-Source Voltage Components

It is important to note that the gate-source voltage consists of two parts as illustrated below:

$V_{G S}=V_{T 0}+V_{O N}=$ Part to enhance the channel + Part to cause current flow
where
$V_{O N}=V_{D S}(\mathrm{sat})=V_{G S}-V_{T 0}$
$\therefore V_{M I N}=V_{O N^{\circ}}=V_{D S}($ sat $)=\sqrt{\frac{2 I_{D}}{K^{\prime}(W / L)}}$ for the simple current sink.
Note that $V_{M I N}$ can be reduced by using large values of W/L.

## Simulation of a Simple MOS Current Sink



Design of $V_{G S 1}: V_{G S 1}=\sqrt{\frac{2 I_{D}}{K^{\prime}(W / L)}}+V_{T}=0.426+0.7=1.126 \mathrm{~V}$
Comments:
$V_{M I N}$ is too large - desire $V_{M I N}$ to approach zero, at least approach $V_{C E}$ (sat)
Slope too high - desire the characteristic to be flat implying very large output resistance

## Increasing the Output Resistance of a Current Sink/Source

Principle:
In order to increase the output resistance, use negative series feedback because,

$$
r_{\text {out }}(\text { with feedback })=r_{\text {out }}(\text { without feedback }) \times[1+\text { Loop gain }]
$$

This is sometimes called "degeneration".

## Circuit:

How does it work?

1.) Assume $i_{\text {out }}$ increases.
2.) As a result, $v_{S}$ increases.
3.) Since the gate is held constant at $V_{G G}$, then $v_{G S}$ decreases.
4.) The decrease in $v_{G S}$ causes $i_{O U T}$ to decrease opposing the the original increase.
Loop Gain?


$$
i_{\text {OUT }}^{\prime}=g_{m} v_{S}=g_{m} R i_{\text {OUT }}
$$

$$
\therefore \text { Loop gain }=\frac{i_{\text {OUT }}}{i_{\text {OUT }}}=g_{m} R
$$

$$
r_{\text {out }}(\mathrm{w} . \mathrm{fb} .)=r_{\text {out }}(\mathrm{w} / \mathrm{o} \mathrm{fb} .) \mathrm{x}\left[1+g_{m} R\right]=r_{d s}\left(1+g_{m} R\right)
$$

$$
\text { If } g_{m} R \gg 1 \text {, then } r_{\text {out }}(\mathrm{w} . \mathrm{fb} .) \approx g_{m} r_{d s} R
$$

## Increasing the Output Resistance of a Simple Current Sink

Small signal model for calculating the output resistance for the cascode current sink:


Loop equation:

$$
v_{\text {out }}=\left(i_{\text {out }}-g_{m 2} v_{g s 2}-g_{m b s 2} v_{b s 2}\right) r_{d s 2}+i_{\text {out }} R=i_{\text {out }}\left(r_{d s 2}+R\right)-g_{m 2} r_{d s 2} v_{g s 2}-g_{m b s 2} r_{d s 2} v_{b s 2}
$$

But,

$$
v_{g s 2}=0-v_{s 2}=-i_{o u t} R \quad \text { and } \quad v_{b s 2}=0-v_{s 2}=-i_{o u t} R
$$

Therefore,

$$
v_{\text {out }}=i_{\text {out }}\left[r_{d s 2}+R+g_{m 2} r_{d s 2} R+g_{m b s 2} r_{d s 2} R\right]
$$

or

$$
r_{\text {out }}=\frac{v_{\text {out }}}{i_{\text {out }}}=r_{d s 2}+R+g_{m 2} r_{d s 2} R+g_{m b s 2} r_{d s 2} R \approx g_{m 2} r_{d s 2} R
$$

A general principle emerges:
The output resistance of a cascode circuit $\approx R \times$ (Common source voltage gain of the cascoding transistor)

## Cascode Current Sink



Small signal output resistance:
Noting that $v_{g s 1}=v_{g 2}=v_{b 2}=0$ and writing a loop equation we get,

$$
v_{\text {out }}=\left(i_{\text {out }}-g_{m 2} v_{g s 2}-g_{m b s 2} v_{b s 2}\right) r_{d s 2}+r_{d s 1} i_{\text {out }}
$$

However,

$$
v_{g s 2}=0-v_{s 2}=-i_{\text {out }} r_{d s 1} \quad \text { and } \quad v_{b s 2}=0-v_{s 2}=-i_{\text {out }} \mathrm{r}_{d s 1}
$$

Therefore,

$$
v_{\text {out }}=i_{\text {out }}\left[r_{d s 1}+\mathrm{r}_{d s 2}+g_{m 2} r_{d s 1} r_{d s 2}+g_{m b s 2} r_{d s 1} r_{d s 2}\right]
$$

or

$$
r_{\text {out }}=\frac{v_{\text {out }}}{i_{\text {out }}}=r_{d s 1}+r_{d s 2}+g_{m 2} r_{d s 1} r_{d s 2}+g_{m b s 2} r_{d s 1} r_{d s 2} \approx g_{m 2} r_{d s 1} r_{d s 2}
$$

Comments:
1.) Same as before if $R=r_{d s 1}$
2.) Bulk effects have little influence and should be neglected.

## Simulation of the Cascode CMOS Current Sink



Example
Use the model parameters of Table 3.1-2 to calculate (a) the small-signal output resistance for the simple current sink if $I_{O U T}=100 \mu \mathrm{~A}$ and (b) the small-signal output resistance for the cascode current sink with $I_{\text {OUT }}=100 \mu \mathrm{~A}$. Assume that all W/L values are 10.

## Solution

(a) Using $\lambda=0.04$ and $I_{O U T}=100 \mu \mathrm{~A}$ gives $r_{d s 1}=250 \mathrm{k} \Omega=r_{d s 2}$. (b) Ignoring the bulk effect, we find that $g_{m 1}=g_{m 2}=469 \mu \mathrm{~S}$ which gives $r_{\text {out }}=(250 \mathrm{k} \Omega)(469 \mu \mathrm{~S})(250 \mathrm{k} \Omega)=29.32 \mathrm{M} \Omega$.

## Gate-Source Matching Principle

A. If the gate-source voltages of two or more transistors are equal and the transistors are matched and operating in the saturation region, then the currents are related by the W/L ratios of the individual transistors. The gate-source voltages may be directly connected or implied.

$$
\begin{aligned}
& i_{D 1}=\frac{K^{\prime} W_{1}}{2 L_{1}}\left(v_{G S 1}-V_{T 1}\right)^{2} \rightarrow \quad\left(v_{G S 1}-V_{T 1}\right)^{2}=\frac{2 K^{\prime} i_{D 1}}{\left(W_{1} / L_{1}\right)} \\
& i_{D 2}=\frac{K^{\prime} W_{2}}{2 L_{2}}\left(v_{G S 2}-V_{T 2}\right)^{2} \rightarrow \quad\left(v_{G S 2}-V_{T 2}\right)^{2}=\frac{2 K^{\prime} i_{D 2}}{\left(W_{2} / L_{2}\right)}
\end{aligned}
$$

$$
\text { If } v_{G S 1}=v_{G S 2} \text {, then }\left(\frac{W_{2}}{L_{2}}\right) i_{D 1}=\left(\frac{W_{1}}{L_{1}}\right) i_{D 2} \quad \text { or } \quad i_{D 1}=\left(\frac{W_{1} / L_{1}}{W_{2} / L_{2}}\right) i_{D 2}
$$

B. If the drain currents of two or more transistors are equal and the transistors are matched and operating in the saturation region, then the gate-source voltages are related by the W/L ratios ignoring bulk effects.

If $i_{D 1}=i_{D 2}$, then $v_{G S 1}=V_{T 1}+\sqrt{\frac{W_{2} / L_{2}}{W_{1} / L_{1}}}\left(v_{G S 2}-V_{T 2}\right)$
or
if $W_{2} / L_{2}=W_{1} / L_{1}$, then $v_{G S 1}=v_{G S 2}$

(The above relationships are exact if the drain-source voltages of both transistors are equal.)

## Practical Cascode Current Sink Implementation

Does not require any batteries and uses the gate-source matching principle.



However, $V_{M I N}$ is now equal to $V_{T}+V_{O N}+v_{D S 2}(\min )=V_{T}+V_{O N}+V_{O N}=V_{T}+2 V_{O N}$
Assuming that $I_{\text {OUT }}=100 \mu \mathrm{~A}$ and $W_{2} / L_{2}=W_{1} / L_{1}=10$ gives $V_{O N}=0.426 \mathrm{~V}$.
Thus $V_{M I N}=0.7 \mathrm{~V}+2 \cdot 0.426 \mathrm{~V}=1.55 \mathrm{~V}$ (way too much)

## High-Swing Cascode Current Sink




Since $V_{O N}=\sqrt{\frac{2 I_{D}}{K^{\prime}(W / L)}}$, then if $L / W$ is quadrupled, then $V_{O N}$ is doubled. $\therefore V_{M I N}=2 V_{O N}$.
Example 4.3-2
Use the cascode current sink configuration above to design a current sink of $100 \mu \mathrm{~A}$ and a $V_{M I N}=1 \mathrm{~V}$. Assume the device parameters of Table 3.1-2.

## Solution

With $V_{M I N}=1 \mathrm{~V}$, choose $V_{O N}=0.5 \mathrm{~V}$. Assuming M1 and M2 are identical gives

$$
\frac{W}{L}=\frac{2 \cdot I_{O U T}}{\mathrm{~K}^{\prime} \cdot V_{O N}{ }^{2}}=\frac{2 \cdot 100 \times 10^{-6}}{110 \times 10^{-6} \times 0.25}=7.27 \quad \Rightarrow \quad \frac{W_{1}}{L_{1}}=\frac{W_{2}}{L_{2}}=\frac{W_{3}}{L_{3}}=7.27 \quad \text { and } \frac{W_{4}}{L_{4}}=1.82
$$

## Improved High-Swing Cascode Current Sink

Because the drain-source voltages of the matching transistors, M1 and M3 are not equal, $i_{O U T} \neq I_{R E F}$.
To circumvent this problem the following cascode current sink is utilized:


Note that the drain-source voltage of M 1 and M 3 are identical causing $i_{O U T}$ to be a replication of $I_{R E F}$.
Design Procedure
1.) Since $V_{M I N}=2 V_{O N}=2 V_{D S}($ sat $)$, let $V_{O N}=0.5 V_{M I N}$.
2.) $V_{O N}=\sqrt{\frac{2 I_{R E F}}{K^{\prime}(W / L)}} \quad \Rightarrow \quad \frac{W_{1}}{L_{1}}=\frac{W_{2}}{L_{2}}=\frac{W_{3}}{L_{3}}=\frac{W_{5}}{L_{5}}=\frac{2 I_{R E F}}{K^{\prime} V_{O N^{2}}{ }^{2}}=\frac{8 I_{R E F}}{K^{\prime} V_{M I N}{ }^{2}}$
3.) $\frac{W_{4}}{L_{4}}=\frac{2 I_{R E F}}{K^{\prime}\left(V_{G S 4}-V_{T}\right)^{2}}=\frac{2 I_{R E F}}{K^{\prime}\left(2 V_{O N}\right)^{2}}=\frac{I_{R E F}}{2 K^{\prime} V_{O N^{2}}{ }^{2}}$

Chapter 4 - Subcircuits (3/22/99)

CMOS Analog Circuit Design

## Signal Flow in Transistors

The last example brings up an interesting and important point. This point is illustrated by the following question, "How does $I_{R E F}$ flow into the M3-M5 combination of transistors since there is no path to the gate of M5?"
Consider how signals flow in transistors:



Fig. 4.3-12B
Answer to the above question:
As $V_{D D}$ increases (i.e. the circuit begins to operate), $I_{R E F}$ cannot flow into the drain of M5, so it flows through the path indicated by the arrow to the gate of M3. It charges the stray capacitance and causes the gate-source voltage of M3 to increase to the exact value necessary to cause $I_{R E F}$ to flow through the M3-M5 combination.


## Example 4.3-3

Assume $I_{\text {REF }}=100 \mu \mathrm{~A}$ and design a cascode current sink with a $V_{\text {MIN }}=0.3 \mathrm{~V}$ using the parameters of Table 3.1-2.

## Solution

From the previous equations, we get

$$
\frac{W_{1}}{L_{1}}=\frac{W_{2}}{L_{2}}=\frac{W_{3}}{L_{3}}=\frac{W_{5}}{L_{5}}=\frac{8 I_{\text {REF }}}{K^{\prime} V_{M I N}{ }^{2}}=\frac{8 \cdot 100}{110 \cdot(0.3 \mathrm{~V})^{2}}=80.8 \text { and } \frac{W_{4}}{L_{4}}=\frac{I_{\text {REF }}}{2 K^{\prime} V_{O N^{2}}{ }^{2}}=\frac{100}{2 \cdot 110 \cdot 0.15^{2}}=20.2
$$

Simulation Results:

| 120 | 11 | 111 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | 11 | 1 | 11 |  | Low Vmin Cascade Current Sink - Method No. 2 M1 5 100 MNMOS W=81U L=1U |
| 100 | -1 |  |  |  |  | M2 $2355 \mathrm{MNMOS} \mathrm{W}=81 \mathrm{U} \mathrm{L}=1 \mathrm{U}$ |
|  | - |  |  |  |  | M3 4100 MNMOS W=81U L=1U |
|  | - : |  |  |  |  | M4 $3300 \mathrm{MNMOS} \mathrm{W}=20 \mathrm{U} \mathrm{L}=1 \mathrm{U}$ |
| $\overbrace{3}^{3} 80$ | - |  |  |  | 1 | M5 1344 MNMOS W=81U L=1U |
|  | - |  |  |  |  | .MODEL MNMOS NMOS VTO=0.7 KP=110U + LAMBDA $=0.04$ GAMMA $=0.4 \mathrm{PHI}=0.7$ |
| ${ }_{5}^{5} 60$ |  |  |  |  | - |  |
| $\stackrel{\square}{-}$ | - |  |  |  | - | VDD 60 DC 5V |
|  | 1 |  |  |  |  | IIN1 61 DC 100U |
| 40 | - |  |  |  |  | IIN2 63 DC 100U |
|  |  |  |  |  |  | VOUT 20 DC 5.0 |
| 20 |  |  |  |  |  | .OP |
|  | $V^{\text {VIN }}$ |  |  |  | - | .DC VOUT 500.05 |
|  |  |  |  |  | - | .PRINT DC ID(M2) |
|  |  |  | $2 v_{O U T}(\mathrm{~V})$ |  | $\begin{array}{lc} \hline 4 & 5 \\ & \text { Fig. } 4.3-13 \end{array}$ | .END |

## Self-Biased Cascode Current Sink ${ }^{\dagger}$

The $V_{T}+2 V_{O N}$ bias voltage is developed through a series resistor.


Design procedure:
Same as the previous except

$$
R=\frac{V_{O N}}{I_{R E F}}=\frac{V_{M I N}}{2 I_{R E F}}
$$

For the previous example,

$$
R=\frac{0.3 \mathrm{~V}}{2 \cdot 100 \mu \mathrm{~A}}=1.5 \mathrm{k} \Omega
$$

[^0]
## Regulated Cascode Current Sink ${ }^{\dagger}$




Comments:

- Achieves very high output resistance by increasing the loop gain due to the M4-M5 inverting amplifier.

$$
\text { Loop gain }=g_{m 3} r_{d s 2}\left(\frac{g_{m 4}}{g_{d s 4}+g_{d s 5}}\right) \approx \frac{g_{m 3} r_{d s 2} g_{m 4} r_{d s} 4}{2} \text { if } r_{d s 4} \approx r_{d s 5} \quad \therefore r_{\text {out }} \approx 0.5 r_{d s 3} g_{m 3} r_{d s 2} g_{m 4} r_{d s 4}
$$

- Allows M3 to maintain "constant" current even though it is no longer in the saturation region.

$$
\begin{array}{lllll}
\text { Assume an } i_{O U T} \text { increase } & \rightarrow & v_{S 3} \text { increase } & \rightarrow & v_{G S 4} \text { increase } \\
\rightarrow \quad v_{G 3} \text { decrease } & \rightarrow & \text { Large decrease in } v_{G S 3} & \rightarrow & \text { Large decrease in } i_{O U T}
\end{array}
$$

${ }^{\dagger}$ E. Sackinger and W. Guggenbuhl, "A Versatile Building Block: The CMOS Differential Difference Amplifier," IEEE J. of Solid-State Circuits, vol. SC-22, no. 2, pp. 287-294, April 1987.

Chapter 4 - Subcircuits (3/22/99)

## Regulated Cascode Current Sink - Continued

Small signal model:


Solving for the output resistance:

$$
i_{\text {out }}=g_{m 3} v_{g s 3}+g_{d s 3}\left(v_{\text {out }}-v_{g s 4}\right)
$$

But

$$
v_{g s 4}=i_{\text {out }} r_{d s 2}
$$

and

$$
v_{g s 3}=v_{g 3}-v_{s 3}=-g_{m 4}\left(r_{d s 4} \| r_{d s 5}\right) v_{g s 4}-v_{g s 4}=-r_{d s 2}\left[1+g_{m 4}\left(r_{d s 4} \| r_{d s 5}\right)\right] i_{o u t}
$$

$\therefore \quad i_{\text {out }}=-g_{m 3} r_{d s 2}\left[1+g_{m 4}\left(r_{d s 4} \| r_{d s 5}\right)\right] i_{\text {out }}+g_{d s 3} v_{\text {out }}-g_{d s 3} r_{d s 2} i_{\text {out }}$

$$
v_{\text {out }}=r_{d s 3}\left[1+g_{m 3} r_{d s 2}+g_{d s 3} r_{d s 2}+g_{m 3} r_{d s 2} g_{m 4}\left(r_{d s 4} \| r_{d s 5}\right)\right] i_{o u t}
$$

$\therefore \quad r_{\text {out }}=\frac{v_{\text {out }}}{i_{\text {out }}}=r_{d s 3}\left[1+g_{m 3} r_{d s 2}+g_{d s 3} r_{d s 2}+g_{m 3} r_{d s 2} g_{m 4}\left(r_{d s 4} \| r_{d s 5}\right)\right] \approx r_{d s 3} g_{m 3} r_{d s 2} g_{m 4}\left(r_{d s 4} \| r_{d s 5}\right)$
If $I_{R E F}=100 \mu \mathrm{~A}$, all $\mathrm{W} / \mathrm{Ls}$ are $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ we get $r_{d s}=0.25 \mathrm{M} \Omega$ and $g_{m}=469 \mu \mathrm{~S}$ which gives
$r_{\text {out }} \approx(0.25 \mathrm{M} \Omega)(469 \mu \mathrm{~S})(0.25 \mathrm{M} \Omega)(469 \mu \mathrm{~S})(0.125 \mathrm{M} \Omega)=1.72 \mathrm{G} \Omega$

## Regulated Cascode Current Sink - Continued

## $V_{M I N}$ :

Without the use of the $V_{O 1}$ battery shown, $V_{M I N}$ is pretty bad. It is,
$V_{M I N}=V_{G S 4}+V_{D S 3}(\mathrm{sat})=V_{T}+2 V_{O N}$
Minimizing $V_{\text {MIN }}$ :
If $V_{O 1}=V_{T}$, then $V_{M I N}=2 V_{O N}$. This is accomplished by the following circuit:


$$
\text { If } V_{G S 4 A}-V_{G S 4 B}=V_{D S 2}(\mathrm{sat})=V_{O N},
$$

$$
\text { then } V_{M I N}=2 V_{O N}
$$

$$
\therefore \sqrt{\frac{2 I_{D 4}}{K_{N}\left(W_{4 A} / L_{4 A}\right)}}-\sqrt{\frac{2 I_{B}}{K_{N}\left(W_{4 B} / L_{4 B}\right)}}=\sqrt{\frac{2 I_{B}+2 I_{\text {REF }}}{K_{N}^{\prime}\left(W_{2} / L_{2}\right)}}
$$

or
$\sqrt{\frac{I_{D 4}}{W_{4 A} / L_{4 A}}}-\sqrt{\frac{I_{B}}{W_{4 B} / L_{4 B}}}=\sqrt{\frac{I_{B}+I_{R E F}}{W_{2} / L_{2}}}$

A number of solutions exist. For example, let $I_{B}=I_{\text {REF }}$. This gives $I_{D 4 A}=5.824 I_{\text {REF }}$ assuming all W/L ratios are identical.

Chapter 4 - Subcircuits (3/22/99)

## Example 4.3-4 - Design of a Minimum $\mathbf{V}_{\underline{\text { MIN }}}$ Regulated Cascode Current Sink

Design a regulated cascode current sink for $100 \mu \mathrm{~A}$ and with a minimum voltage of $V_{\text {MIN }}=0.3 \mathrm{~V}$.

## Solution

Let the W/L ratios of M1 through M5 be equal. Therefore, $\frac{W}{L}=\frac{2 I}{K^{\prime} \cdot V_{O N^{2}}}=\frac{2 \cdot 100}{110 \cdot 0 \cdot 15^{2}}=80.8 \approx 81$.
Choose $I_{B}=10 \mu \mathrm{~A}$. This gives $I_{D 4 A}=(\sqrt{10}+\sqrt{110})^{2}=186 \mu \mathrm{~A}$
Circuit:


## Comparison of the Casode Current Sink and Regulated Cascode Current Sink

Close examination in the knee area reveals interesting differences.
Simulation results:


Comments:

- The regulated cascode current is smaller than the cascode current because the drain-source voltages of M1 and M2 are not equal.
- The regulated cascode current sink has a smaller $V_{M I N}$ due to the fact that M3 can have a drain-source voltage smaller than $V_{D S}($ sat $)$.


## Summary of Current Sinks and Sources

| Current Sink/Source | $r_{\text {OUT }}$ | $V_{\text {MIN }}$ |
| :--- | :---: | :---: |
| Simple Current Sink | $r_{d s}=\frac{1}{\lambda I_{D}}$ | $V_{D S}($ sat $)=V_{O N}$ |
| Cascode MOS | $\approx g_{m 2} r_{d s 2} r_{d s 1}$ | $V_{T}+2 V_{O N}$ |
| Minimum $V_{\text {MIN }}$ Casode Current Sink | $\approx g_{m 2} r_{d s 2} r_{d s 1}$ | $2 V_{O N}$ |
| Regulated Cascode Current Sink* | $\approx r_{d s 3} g_{m 3} r_{d s 2} g_{m 4}\left(r_{d s 4} \\| r_{d s 5}\right)$ | $\approx V_{T}+V_{O N}$ |
| Minimum $V_{M I N}$ Regulated Cascode <br> Current Sink* | $\approx r_{d s 3} g_{m 3} r_{d s 2} g_{m 4}\left(r_{d s 4} \\| r_{d s 5}\right)$ | $\approx V_{O N}$ |

* Unfortunately, the regulated cascode current sink has a dominant pole in the feedback loop which can cause a pole-zero doublet which leads to a combination of fast and slow time constants. For this reason, the regulated cascode circuit should only be used in biasing applications.


## SECTION 4.4-CURRENT MIRRORS

## Characterization of Current Mirrors

A current mirror is basically nothing more than a current amplifier. The ideal characteristics of a current amplifier are:

- Output current linearly related to the input current, $i_{\text {out }}=A_{i} i_{\text {in }}$
- Input resistance is zero
- Output resistance is infinity

In addition, we have the characteristic $V_{M I N}$ which applies not only to the output but also the input.

- $V_{M I N}(\mathrm{in})$ is the range of input voltage over which the input resistance is not small
- $V_{\text {MIN }}($ out $)$ is the range of the output voltage over which the output resistance is not large

Graphically:





Fig. 4.4-1
Therefore, we will focus on $R_{\text {out }}, R_{i n}, V_{M I N}($ out $), V_{M I N}($ in $)$, and $A_{i}$ to characterize the current mirror.

## Simple Current Mirror



Assume that $v_{D S 2}>v_{G S}-V_{T 2}$, then

$$
\frac{i_{O}}{i_{I}}=\left(\frac{L_{1} W_{2}}{W_{1} L_{2}}\right)\left(\frac{V_{G S^{-}} V_{T 2}}{V_{G S^{-}} V_{T 1}}\right) 2\left[\frac{1+\lambda v_{D S 2}}{1+\lambda v_{D S 1}}\left(\frac{K_{2}^{\prime}}{K_{1}^{\prime}}\right)\right]
$$

If the transistors are matched, then $K_{1}{ }^{\prime}=K_{2}{ }^{\prime}$ and $V_{T 1}=V_{T 2}$ to give,

$$
\frac{i_{O}}{i_{I}}=\left(\frac{L_{1} W_{2}}{W_{1} L_{2}}\right)\left(\frac{1+\lambda v_{D S 2}}{1+\lambda v_{D S 1}}\right)
$$

If $v_{D S 1}=v_{D S 2}$, then

$$
\frac{i_{O}}{i_{I}}=\left(\frac{L_{1} W_{2}}{W_{1} L_{2}}\right)
$$

Therefore the sources of error are 1.) $v_{D S 1} \neq v_{D S 2}$ and 2.) M 1 and M 2 are not matched.

## Influence of the Channel Modulation Parameter, $\boldsymbol{\lambda}$

If the transistors are matched and the W/L ratios are equal, then

$$
\frac{i_{O}}{i_{\mathrm{I}}}=\frac{1+\lambda v_{D S 2}}{1+\lambda v_{D S 1}}
$$

assuming that the channel modulation parameter is the same for both transistors $\left(L_{1}=L_{2}\right)$.
Ratio error (\%) versus drain voltage difference:


Note that one could use this effect to measure $\lambda$.
Measure $V_{D S 1}, V_{D S 2}, i_{I}$ and $i_{O}$ and solve the above equation for the channel modulation parameter, $\lambda$.

Chapter 4 - Subcircuits (3/22/99)

## Influence of Mismatched Transistors

Assume that $v_{D S 1}=v_{D S 2}$ and that $K_{1}{ }^{\prime} \neq K_{2}{ }^{\prime}$ and $V_{T 1} \neq V_{T 2}$. Therefore we have

$$
\frac{i_{O}}{i_{I}}=\frac{K_{2}^{\prime}\left(v_{G S}-V_{T 2}\right)^{2}}{K_{1}^{\prime}\left(v_{G S}-V_{T 1}\right)^{2}}
$$

How do you analyze the mismatch? Use plus and minus worst case approach. Define

$$
\begin{array}{lllll} 
& \Delta K^{\prime}=K^{\prime}-K_{1}^{\prime} & K^{\prime}=0.5\left(K_{2}^{\prime}+K_{1}^{\prime}\right) & \Delta V_{T}=V_{T 2}-V_{T 1} \quad \text { and } \quad V_{T}=0.5\left(V_{T 1}+V_{T 2}\right) . \\
\therefore & K_{1}^{\prime}=K^{\prime}-0.5 \Delta K^{\prime} & K_{2}^{\prime}=K^{\prime}+0.5 \Delta K^{\prime} & V_{T 1}=V_{T}-0.5 \Delta V_{T} \quad \text { and } \quad V_{T 2}=V_{T}+0.5 \Delta V_{T}
\end{array}
$$

Substituting these terms into the above equation gives,

$$
\frac{i_{O}}{i_{I}}=\frac{\left(K^{\prime}+0.5 \Delta K^{\prime}\right)\left(v_{G S}-V_{T}-0.5 \Delta V_{T}\right)^{2}}{\left(K^{\prime}-0.5 \Delta K^{\prime}\right)\left(v_{G S}-V_{T}+0.5 \Delta V_{T}\right)^{2}}=\frac{\left(1+\frac{\Delta K^{\prime}}{2 K^{\prime}}\right)\left(1-\frac{\Delta V_{T}}{2\left(v_{G S^{\prime}} V_{T}\right.}\right)^{2}}{\left(1-\frac{\Delta K^{\prime}}{2 K^{\prime}}\right)\left(1+\frac{\Delta V_{T}}{2\left(v_{G S^{-}} V_{T}\right)}\right)^{2}}
$$

Assuming that the terms added to or subtracted from " 1 " are smaller than unity gives

$$
\frac{i_{O}}{i_{I}} \approx\left(1+\frac{\Delta K^{\prime}}{2 K^{\prime}}\right)\left(1+\frac{\Delta K^{\prime}}{2 K^{\prime}}\right)\left(1-\frac{\Delta V_{T}}{2\left(v_{G S} V_{T}\right)}\right)^{2}\left(1-\frac{\Delta V_{T}}{2\left(v_{G S^{-}} V_{T}\right)}\right)^{2} \quad \text { Uses the approximation } 1 /(1+\varepsilon) \approx 1-\varepsilon
$$

Retaining only first order products gives

$$
\frac{i_{O}}{i_{I}} \approx 1+\frac{\Delta K^{\prime}}{K^{\prime}}-\frac{2 \Delta V_{T}}{\left(v_{G S} V_{T}\right)}
$$

Assume $\Delta K^{\prime} / K^{\prime}= \pm 5 \%$ and $\Delta V_{T} /\left(v_{G S} V_{T}\right)= \pm 10 \%$.
$\therefore i_{O} / i_{I} \approx 1 \pm 0.05 \pm(-0.20)=1 \pm(0.25) \quad \Rightarrow \quad \pm 15 \%$ error in gain if tolerances are correlated.

## Illustration of the Offset Voltage Error Influence

Assume that $V_{T 1}=0.7 \mathrm{~V}$ and $K^{\prime} W / L=110 \mu \mathrm{~A} / \mathrm{V}^{2}$.


Key: Make the part of $V_{G S}$ that causes the current to flow, $V_{O N}$, more significant than $V_{T}$.

## Influence of Error in Aspect Ratio of the Transistors

## Example 4.4-1 - Aspect Ratio Errors in Current Mirrors

Figure 4.4-4 shows the layout of a one-to-four current amplifier. Assume that the lengths are identical $\left(L_{1}=\right.$ $L_{2}$ ) and find the ratio error if $W_{1}=5 \pm 0.1 \mu \mathrm{~m}$. The actual widths of the two transistors are

$$
W_{1}=5 \pm 0.1 \mu \mathrm{~m} \text { and } W_{2}=20 \pm 0.1 \mu \mathrm{~m}
$$

## Solution

We note that the tolerance is not multiplied by the nominal gain factor of 4 . The ratio of $W_{2}$ to $W_{1}$ and consequently the gain of the current amplifier is

$$
\frac{i_{O}}{i_{I}}=\frac{W_{2}}{W_{1}}=\frac{20 \pm 0.1}{5 \pm 0.1}=4\left(\frac{1 \pm \frac{0.1}{20}}{1 \pm \frac{0.1}{5}}\right) \approx 4\left(1 \pm \frac{0.1}{20}\right)\left(1-\frac{ \pm 0.1}{5}\right) \approx 4\left(1 \pm \frac{0.1}{20}-\frac{ \pm 0.4}{20}\right)=4-( \pm 0.06)
$$

where we have assumed that the variations would both have the same sign (correlated). It is seen that this ratio error is $1.5 \%$ of the desired current ratio or gain.


## Influence of Error in Aspect Ratio of the Transistors-Continued

Example 4.4-2 - Reduction of the Aspect Ratio Errors in Current Mirrors
Use the layout technique illustrated in Fig. 4.4-5 and calculate the ratio error of a current amplifier having the specifications of the previous example.

## Solutions

The actual widths of M1 and M2 are

$$
W_{1}=5 \pm 0.1 \mu \mathrm{~m} \text { and } W_{2}=4(5 \pm 0.1) \mu \mathrm{m}
$$

The ratio of $W_{2}$ to $W_{1}$ and consequently the current gain is given below and is for all practical purposes independent of layout error.

$$
\frac{i_{O}}{i_{I}}=\frac{4(5 \pm 0.1)}{5 \pm 0.1}=4
$$



Chapter 4 - Subcircuits (3/22/99)

## Summary of the Simple Current Mirror/Amplifier

- Minimum input voltage is $V_{M I N}(\mathrm{in})=V_{T}+V_{O N}$

Okay, but could be reduced to $V_{O N}$.
Principle:


- Minimum output voltage is $V_{\text {MIN }}($ out $)=V_{O N}$
- Output resistance is $R_{\text {out }}=\frac{1}{\lambda I_{D}}$
- Input resistance is $R_{i n} \approx \frac{1}{g_{m}}$
- Current gain accuracy is poor because $v_{D S 1} \neq v_{D S 2}$


## Cascode Current Mirror

Improving the output resistance:


Fig. 4.4-8

- $R_{\text {out }}$ :
$v_{\text {out }}=r_{d s 4}\left(i_{\text {out }}-g_{m 4} v_{g s 4}\right)+r_{d s 2}\left(i_{\text {out }} g_{m 2} v_{g s 2}\right)$
But, $i_{\text {in }}=0$ so that $v_{1}=v_{3}=0 \quad \Rightarrow \quad v_{g s 4}=-v_{s 4}=-i_{\text {out }} r_{d s 2}$ and $v_{g s 2}=0$

$$
\therefore \quad v_{\text {out }}=i_{\text {out }}\left[r_{d s 4}+r_{d s 2}+g_{m 4} r_{d s 2} r_{d s 4}\right] \approx r_{d s 2} g_{m 4} r_{d s 4} i_{\text {out }} \Rightarrow R_{\text {out }} \approx r_{d s 2} g_{m 4} r_{d s 4}
$$

- $R_{i n}$ :

$$
R_{i n}=\frac{1}{g_{m 3}}\left\|r_{d s 3}+\frac{1}{g_{m 1}}\right\| r_{d s 1} \approx \frac{1}{g_{m 1}}+\frac{1}{g_{m 3}} \approx \frac{2}{g_{m}}
$$

- $V_{M I N}($ out $)=V_{T}+2 V_{O N}$
- $V_{M I N}(\mathrm{in})=2\left(V_{T}+V_{O N}\right)$
- Current gain: Excellent since $v_{D S 1}=v_{D S 2}$


## Large Output Swing Cascode Current Mirror



- $R_{\text {out }} \approx g_{m 2} r_{d s 2} r_{d s 1}$
- $R_{\text {in }}=? \quad v_{\text {in }}=r_{d s 5}\left(i_{\text {in }}-g_{m 5} v_{g s 5}\right)+v_{s 5}=r_{d s 5}\left(i_{i n}+g_{m 5} v_{s 5}\right)+v_{s 5}=r_{d s 5} i_{\text {in }}+\left(1+g_{m 5} r_{d s 5}\right) v_{s 5}$

But, $v_{s 5}=r_{d s}\left(i_{i n}-g_{m 3} v_{i n}\right)$
$\therefore \quad v_{i n}=r_{d s 5} i_{i n}+\left(1+g_{m 5} r_{d s 5}\right) r_{d s 3} i_{i n}-g_{m 3} r_{d s 3}\left(1+g_{m 5} r_{d s 5}\right) v_{i n}$
$R_{\text {in }}=\frac{v_{i n}}{i_{i n}}=\frac{r_{d s 5}+r_{d s 3}+r_{d s 3} g_{m 5} r_{d s 5}}{g_{m 3} r_{d s 3}\left(1+g_{m 5} r_{d s 5}\right)} \approx \frac{1}{g_{m 3}}$

- $V_{\text {MIN }}($ out $)=2 V_{\text {ON }}$
- $V_{M I N}(\mathrm{in})=V_{T}+V_{O N}$
- Current gain is excellent because $v_{D S 1}=v_{D S 3}$.


## Self-Biased Cascode Current Mirror



Self-biased, cascode current mirror


Small-signal model to calculate $R_{\text {in }}$. Fig. 4.4-10

- $R_{\text {in }}=? \quad v_{i n}=i_{i n} R+r_{d s 3}\left(i_{i n}-g_{m 3} v_{g s 3}\right)+r_{d s 1}\left(i_{i n}-g_{m 1} v_{g s 1}\right)$

$$
\text { But, } \quad v_{g s 1}=v_{i n}-i_{i n} R \quad \text { and } \quad v_{g s 3}=v_{i n}-r_{d s 1}\left(i_{i n}-g_{m 1} v_{g s 1}\right)=v_{i n}-r_{d s 1} i_{i n}+g_{m 1} r_{d s 1}\left(v_{i n}-i_{i n} R\right)
$$

$$
\therefore \quad v_{i n}=i_{i n} R+r_{d s 3} i_{i n}-g_{m 3} r_{d s 3}\left[v_{i n}-r_{d s 1} i_{i n}+g_{m 1} r_{d s 1}\left(v_{i n}-i_{i n} R\right)\right]+r_{d s 1}\left[i_{i n}-g_{m 1}\left(v_{i n}+i_{i n} R\right)\right]
$$

$$
v_{i n}\left[1+g_{m 3} r_{d s 3}+g_{m 1} r_{d s 1} g_{m 3} r_{d s 3}+g_{m 1} r_{d s 1}\right]=i_{\mathrm{in}}\left[R+r_{d s 1}+r_{d s 3}+g_{m 3} r_{d s 3} r_{d s 1}+g_{m 1} r_{d s 1} g_{m 3} r_{d s 3} R\right]
$$

$$
R_{i n}=\frac{R+r_{d s 1}+r_{d s 3}+g_{m 3} r_{d s 3} r_{d s 1}+g_{m 1} r_{d s 1} g_{m 3} r_{d s 3} R}{1+g_{m 3} r_{d s 3}+g_{m 1} r_{d s 1} g_{m 3} r_{d s 3}+g_{m 1} r_{d s 1}} \approx \frac{1}{g_{m 1}}+R
$$

- $R_{\text {out }} \approx g_{m 4} r_{d s 4} r_{d s 2}$
- $V_{M I N}($ in $)=V_{T}+2 V_{O N} \quad \bullet V_{M I N}($ out $)=2 V_{O N}$
- Current gain matching is excellent


## Wilson Current Mirror



Fig. 4.4-11
Uses negative series feedback to achieve higher output resistance.

- $R_{\text {out }}=?\left(i_{\text {in }}=0\right) \quad v_{\text {out }}=r_{d s 2}\left(i_{\text {out }}-g_{m 3} v_{g s 3}\right)+v_{g s 2}$

$$
\begin{gathered}
v_{g s 2}=\frac{i_{\text {out }}}{g_{m 2}+g_{d s 2}}=\frac{r_{d s 2} i_{\text {out }}}{1+g_{m 2} r_{d s 2}} \text { and } \quad v_{g s 3}=-g_{m 1} r_{d s 1} v_{g s 2}-v_{g s 2}=-\left(1+g_{m 1} r_{d s 1}\right) v_{g s 2} \\
\therefore v_{\text {out }}=r_{d s 2} i_{\text {out }}+g_{m 3} r_{d s 2}\left(1+g_{m 1} r_{d s 1}\right) v_{g s 2}=i_{\text {out }}\left[r_{d s 3}+r_{d s 2}\left(\frac{1+g_{m 3} r_{d s 2}+g_{m 1} r_{d s 1} g_{m 3} r_{d s 3}}{1+g_{m 2} r_{d s 2}}\right)\right] \\
R_{\text {out }}=r_{d s 3}+r_{d s 2}\left(\frac{1+g_{m 3} r_{d s 2}+g_{m 1} r_{d s 1} g_{m 3} r_{d s 3}}{1+g_{m 2} r_{d s 2}}\right) \approx \frac{g_{m 1} r_{d s 1} g_{m 3} r_{d s 3}}{g_{m 2}}
\end{gathered}
$$

## Wilson Current Mirror - Continued

- $R_{\text {in }}=$ ? $\left(v_{\text {out }}=0\right)$

$$
\begin{aligned}
& i_{i n} \approx g_{m 1} v_{g s 1}=\frac{g_{m 1} g_{m 3} v_{g s 3}}{g_{m 2}+g_{d s 2}+g_{d s 3}} \approx \frac{g_{m 1} g_{m 3} v_{g s 3}}{g_{m 2}} \\
& v_{g s 3}=v_{i n}-v_{g s 1}=v_{i n}-\frac{g_{m 1} g_{m 3} v_{g s 3}}{g_{m 2}} \quad \Rightarrow \quad v_{g s 3}=\frac{v_{i n}}{1+\frac{g_{m 1} g_{m 3}}{g_{m 2}}} \\
\therefore \quad & i_{i n} \approx \frac{g_{m 1} g_{m 3}{ }^{\circ} v_{i n}}{g_{m 2}+g_{m 3}} \quad \Rightarrow \quad R_{i n}=\frac{g_{m 2}+g_{m 3}}{g_{m 1} g_{m 3}}
\end{aligned}
$$

- $V_{M I N}(\mathrm{in})=2\left(V_{T}+V_{O N}\right)$
- $V_{M I N}($ out $)=V_{T}+2 V_{O N}$
- Current gain matching - poor, $v_{D S 1} \neq v_{D S 2}$


## Evolution of the Regulated Cascode Current Mirror from the Wilson Current Mirror



Wilson Current Mirror Redrawn


Regulated Cascode Current Sink

## Regulated Cascode Current Mirror



- $R_{\text {out }} \approx g_{m}{ }^{2} r_{d s}{ }^{3}$
\# $R_{i n} \approx \frac{1}{g_{m 4}}$
- $V_{\text {MIN }}($ out $)=V_{T}+2 V_{O N}\left(\right.$ Can be reduced to $\left.2 V_{O N}\right)$
- $V_{\text {MIN }}($ in $)=V_{T}+V_{O N} \quad$ (Can be reduced to $\left.V_{O N}\right)$
- Current gain matching - good as long as $v_{D S 4}=v_{D S 2}$


## Summary of Current Mirrors

| Current Mirror | Accuracy | Output <br> Resistance | Input <br> Resistance | Minimum <br> Output Voltage | Minimum Input <br> Voltage |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Simple | Poor | $r_{d s}$ | $\frac{1}{g_{m}}$ | $V_{O N}$ | $V_{T}+V_{O N}$ |
| Cascode | Excellent | $g_{m} r_{d s}{ }^{2}$ | $\frac{2}{g_{m}}$ | $V_{T}+2 V_{O N}$ | $2\left(V_{T^{+}} V_{O N}\right)$ |
| Wide Output Swing <br> Cascode | Excellent | $g_{m} r_{d s}{ }^{2}$ | $\frac{1}{g_{m}}$ | $2 V_{O N}$ | $V_{T}+V_{O N}$ |
| Self-biased Cascode | Excellent | $g_{m} r_{d s}{ }^{2}$ | $R+\frac{1}{g_{m}}$ | $2 V_{O N}$ | $V_{T}+2 V_{O N}$ |
| Wilson | Poor | $g_{m} r_{d s}{ }^{2}$ | $\frac{2}{g_{m}}$ | $2\left(V_{T}+V_{O N}\right)$ | $V_{T}+2 V_{O N}$ |
| Regulated Cascode | Good-Excellent | $g_{m}{ }^{2} r_{d s}{ }^{3}$ | $\frac{1}{g_{m}}$ | $\left.\begin{array}{c}V_{T^{2}}+2 V_{O N} \\ (m i n . ~ i s ~\end{array} V_{O N}\right)$ | $V_{T}+V_{O N}$ <br> $(m i n . ~ i s ~$ <br> $V O N$ |

## SECTION 4.5-CURRENT AND VOLTAGE REFERENCES

## Characteristics of a Voltage or Current Reference

What is a Voltage or Current Reference?
A voltage or current reference is an independent voltage or current source that has a high degree of precision and stability.
Requirements of a Reference Circuit:

- Should be independent of power supply
- Should be independent of temperature
- Should be independent of processing variations
- Should be independent of noise and other interference


Fig. 4.5-1

## REFERENCES WITH POWER SUPPLY INDEPENDENCE

## Power Supply Independence

How do you characterize power supply independence?
Use the concept of sensitivity (we will use voltage although $I_{R E F}$ can be substituted for $V_{R E F}$ in the following):

$$
S_{V_{D D}}^{V_{R E F}}=\frac{\partial V_{R E F} / V_{R E F}}{\partial V_{D D} / V_{D D^{\circ}}}=\frac{V_{D D}}{V_{R E F}}\left(\frac{\partial V_{R E F}}{\partial V_{D D}}\right)
$$

Application of sensitivity to determining power supply dependence:

$$
\frac{\partial V_{R E F}}{V_{R E F}}=\left(S_{V_{D D}}^{V_{R E F}}\right) \frac{\partial V_{D D}}{V_{D D}}
$$

Thus, the fractional change in the reference voltage is equal to the sensitivity times the fractional change in the power supply voltage.
For example, if the sensitivity is 1 , then a $10 \%$ change in $V_{D D}$ will cause a $10 \%$ change in $V_{R E F}$.
Ideally, we want $S_{V_{D D}}^{V_{R E F}}$ to be zero for power supply independence.

## Voltage References using Voltage Division



Resistor voltage divider.


Active device voltage divider. Fig. 4.5-2

$$
V_{R E F}=\frac{V_{T N}+\sqrt{\frac{\beta_{P}}{\beta_{N}}}\left(V_{\left.D D^{-}\left|V_{T P}\right|\right)}^{1+\sqrt{\frac{\beta_{P}}{\beta_{N}}}}\right.}{1}
$$

$$
S_{V_{D D}}^{V_{R E F}}=\frac{V_{D D}}{V_{R E F}}\left(\frac{\sqrt{\frac{\beta_{P}}{\beta_{N}}}}{1+\sqrt{\frac{\beta_{P}}{\beta_{N}}}}\right)=\frac{V_{D D} \sqrt{\frac{\beta_{P}}{\beta_{N}}}}{V_{T N}+\sqrt{\frac{\beta_{P}}{\beta_{N}}}\left(V_{\left.D D^{-}-\left|V_{T P}\right|\right)}\right.}
$$

Assume $\beta_{N}=\beta_{P}$ and $V_{T N}=\left|V_{T P}\right| \quad \Rightarrow \quad S_{V_{D D}}^{V_{R E F}}=1$

## References with Sensitivity Less than One

In order to get sensitivities less than one, the upper and lower circuits must be different with the lower circuit less dependent on $V_{D D}$.

In otherwords, the upper circuit should act like a current source and the lower circuit like a voltage source.

## Principle:



Fig. 4.5-3

## MOSFET-Resistance Voltage References


$V_{R E F}=V_{G S}=V_{T}+\sqrt{\frac{2\left(V_{\left.D D^{-}-V_{R E F}\right)}\right.}{\beta R}}$
or $V_{R E F}=V_{T^{-}} \frac{1}{\beta R}+\sqrt{\frac{2\left(V_{D D^{-}} V_{T}\right)}{\beta R}+\frac{1}{(\beta R)^{2}}}$

$$
S_{V_{D D}}^{V_{R E F}}=\left(\frac{1}{1+\beta\left(V_{R E F^{-}} V_{T}\right) R}\right)\left(\frac{V_{D D}}{V_{R E F}}\right)
$$



Fig. 4.5-4

This circuit allows $V_{R E F}$ to be larger.
If the current in $R_{1}$ (and $R_{2}$ ) is small compared to the current flowing through the transistor, then
$V_{R E F} \approx\left(\frac{R_{1}+R_{2}}{R_{2}}\right) V_{G S}$

Assume that $V_{D D}=5 \mathrm{~V}, W / L=2$ and $R=100 \mathrm{k} \Omega$,
Thus, $V_{R E F} \approx 1.281 \mathrm{~V}$ and $S_{V_{R E F}}^{V_{D D}}=0.283$

## Bipolar-Resistance Voltage References


$V_{R E F}=V_{E B}=\frac{k T}{q} \ln \left(\frac{I}{I_{s}}\right)$
$I=\frac{V_{D D}-V_{E B}}{R} \cong \frac{V_{D D}}{R}$
$V_{R E F} \cong \frac{k T}{q} \ln \left(\frac{V_{D D}}{R I_{S}}\right)$
$S_{V_{D D}}^{V_{R E F}}=\frac{1}{\ln \left[V_{D D} /\left(R I_{S}\right)\right]}=\frac{1}{\ln \left(I / I_{S}\right)}$
If $V_{D D}=5 \mathrm{~V}, R=4.3 \mathrm{k} \Omega$ and $I_{S}=1 \mathrm{pA}$, then $V_{R E F}=0.719 \mathrm{~V}$.
Also, $S_{V_{D D}}^{V_{R E F}}=0.0356$

## Example 1 - Design of a Higher-Voltage Bipolar Voltage Reference

Use the circuit on the previous slide to design a voltage reference having $V_{R E F}=2.5 \mathrm{~V}$ when $V_{C C}=5 \mathrm{~V}$. Assume $I_{s}=1 \mathrm{fA}$ and $\beta_{F}=100$. Evaluate the sensitivity of $V_{R E F}$ with respect to $V_{C C}$.

## Solution

Choose $I$ (the current flowing through $R$ ) to be $100 \mu \mathrm{~A}$. Therefore $R=\frac{V_{C C}-V_{R E F}}{100 \mu \mathrm{~A}}=\frac{2.5 \mathrm{~V}}{100 \mu \mathrm{~A}}=25 \mathrm{k} \Omega$.
Choose $I_{1}$ (the current flowing through $R_{1}$ ) to be $50 \mu \mathrm{~A}$. Therefore the current flowing in the emitter is $50 \mu \mathrm{~A}$.
The value of $V_{E B}=V t \ln \left(\frac{50 \mu \mathrm{~A}}{1 \mathrm{fA}}\right)=0.638 \mathrm{~V}$.
$\therefore R_{1}=\frac{0.638 \mathrm{~V}}{50 \mu \mathrm{~A}}=12.76 \mathrm{k} \Omega$
With $50 \mu \mathrm{~A}$ in the emitter, the base current is approximately $5 \mu \mathrm{~A}$.
Therefore, the current through $R_{2}$ is $55 \mu \mathrm{~A}$.
Since $V_{R E F}=I_{R 2} R_{2}+0.638 \mathrm{~V}=2.5 \mathrm{~V}$, we get $R_{2}=\left(\frac{2.5 \mathrm{~V}-0.638 \mathrm{~V}}{55 \mu \mathrm{~A}}\right)=33.85 \mathrm{k} \Omega$.
The sensitivity of $V_{R E F}$ with respect to $V_{C C}$ is

$$
\begin{gathered}
S_{V_{C C}}^{V_{R E F}}=\frac{1}{\ln \left(I_{Q} / I_{S}\right)}=0.0406 \quad\left[\text { The }\left(R_{1}+R_{2}\right) / R_{1}\right. \text { factor does not influence the sensitivity if they have } \\
\text { the same temperature coefficient. }]
\end{gathered}
$$

## Breakdown Diode Voltage References

If the power supply voltage is high enough, i.e. $V_{D D} \approx 10 \mathrm{~V}$, the breakdown diode can be used as a voltage reference.


V-I characteristics of a breakdown diode.


Variation of the temperature coefficient of the breakdown diode as a function of the breakdown voltage, BV.

Fig. 4.5-6
$V_{R E F}=V_{B V}$
$\mathrm{S}_{V_{D D}}^{V_{R E F}}=\left(\frac{\partial V_{\mathrm{REF}}}{\partial V_{D D}}\right)\left(\frac{V_{D D}}{V_{\mathrm{REF}}}\right) \cong\left(\frac{v_{r e f}}{v_{d l}}\right)\left(\frac{V_{D D}}{B V}\right)=\left(\frac{r_{Z}}{r_{Z}+R}\right)\left(\frac{V_{D D}}{B V}\right)$
where $r_{z}$ is the small-signal impedance of the breakdown diode at $I_{Q}(30$ to $100 \Omega)$.
Typical sensitivities are 0.02 to 0.05 .
Note that the temperature dependence could be zero if $V_{B}$ was a variable.

## Bootstrapped Current Source

So far, none of the previous references have shown very good independence from power supply. Let us now examine a technique which does achieve the desired independence.
Circuit:


Principle:
If M3 $=\mathrm{M} 4$, then $I_{1} \approx I_{2}$. However, the M1-R loop gives $V_{G S 1}=V_{T 1}+\sqrt{\frac{2 I_{1}}{K_{N}{ }^{\prime}\left(W_{1} / L_{1}\right)}}$
Solving these two equations gives $\quad I_{2}=\frac{V_{T 1}}{R}+\left(\frac{1}{R}\right) \sqrt{\frac{2 I_{1}}{K_{N}{ }^{\prime}\left(W_{1} / L_{1}\right)}}$
The output current, $I_{\text {out }}=I_{1}=I_{2}$ can be solved as $I_{\text {out }}=\frac{V_{T 1}}{R}+\frac{1}{\beta_{1} R^{2}}+\frac{1}{R} \sqrt{\frac{2 V_{T 1}}{\beta_{1} R}+\frac{1}{\left(\beta_{1} R\right)^{2}}}$

## Simulation Results for the Bootstrapped Current Source



The current $I_{D 2}$ appears to be okay, why is $I_{D 1}$ increasing?
Apparently, the channel modulation on the current mirror M3-M4 is large.
At $V_{D D}=5 \mathrm{~V}, V_{S D 3}=2.83 \mathrm{~V}$ and $V_{S D 4}=1.09 \mathrm{~V}$
which gives $I_{D 3}=1.067 I_{D 4} \approx 107 \mu \mathrm{~A}$
Need to cascode the upper current mirror.

SPICE Input File:

Simple, Bootstrap Current Reference
VDD 10 DC 5.0
VSS 90 DC 0.0
M1 $5799 \mathrm{NW}=20 \mathrm{U} \mathrm{L}=1 \mathrm{U}$
M2 $3579 \mathrm{NW}=20 \mathrm{U} \mathrm{L}=1 \mathrm{U}$
M3 5 3 1 1 P W=25U L=1U
M4 3311 P W=25U L=1U
M5 9311 P W=25U L=1U
R 79 10KILOHM
M8 $6699 \mathrm{NW}=1 \mathrm{U} \mathrm{L}=1 \mathrm{U}$
M7 $6659 \mathrm{NW}=20 \mathrm{U} \mathrm{L}=1 \mathrm{U}$

RB 16 100KILOHM
.OP
.DC VDD 050.1
.MODEL N NMOS VTO $=0.7 \mathrm{KP}=110 \mathrm{U}$ GAMMA= $=0.4$
$+\mathrm{PHI}=0.7$ LAMBDA=0.04
.MODEL P PMOS VTO $=-0.7 \mathrm{KP}=50 \mathrm{U}$ GAMMA $=0.57$
$+\mathrm{PHI}=0.8$ LAMBDA $=0.05$
.PRINT DC ID(M1) ID(M2) ID(M5)
.PROBE
.END

## Cascoded Bootstrapped Current Source




SPICE Input File:

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

M8 $6699 \mathrm{NW}=1 \mathrm{U}$ L=1U
M7 6659 N W=20U L=1U
VDD 10 DC 5.0
RB 16 100KILOHM
M1 $5799 \mathrm{NW}=20 \mathrm{U} \mathrm{L}=1 \mathrm{U}$
M2 $4579 \mathrm{NW}=20 \mathrm{U}$ L=1U
.OP
M3 2311 P W=25U L=1U
DC VDD 050.1
.MODEL N NMOS VTO $=0.7 \quad \mathrm{KP}=110 \mathrm{U}$
GAMMA $=0.4 \mathrm{PHI}=0.7$ LAMBDA $=0.04$
MODEL P PMOS VTO $=-0.7 \quad \mathrm{KP}=50 \mathrm{U}$
GAMMA $=0.57 \mathrm{PHI}=0.8$ LAMBDA $=0.05$
.PRINT DC ID(M1) ID(M2) ID(M5)
.PROBE
.END

## Base-Emitter Referenced Circuit




Fig. 4.5-8

$$
I_{\text {out }}=I_{2}=\frac{V_{E B 1}}{R}
$$

BJT can be a MOSFET in weak inversion.

## Low Voltage Bootstrap MOS Circuit

The previous bootstrap circuits required at least 2 volts across the power supply before operating. A low-voltage bootstrap circuit:


Without the batteries, $V_{T}$, the minimum power supply is $V_{T}+2 V_{O N}+V_{R}$.
With the batteries, $V_{T}$, the minimum power supply is $2 V_{O N^{+}} V_{R} \approx 0.5 \mathrm{~V}$

## REFERENCES WITH TEMPERATURE INDEPENDENCE

## Characterization of Temperature Dependence

The objective is to minimize the fractional temperature coefficient defined as,

$$
T_{C F}=\frac{1}{V_{R E F}}\left(\frac{\partial V_{R E F}}{\partial T}\right)=\frac{1}{T} S_{T}^{V_{R E F}} \text { parts per million per }{ }^{\circ} \mathrm{C} \text { or } \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

Temperature dependence of PN junctions:

$$
\left.\begin{array}{rl}
\mathrm{i} \approx \mathrm{I}_{\mathrm{s}} \exp \left(\frac{\mathrm{v}}{\mathrm{~V}_{\mathrm{t}}}\right) \\
\mathrm{I}_{\mathrm{S}} & =\mathrm{KT}^{3} \exp \left(\frac{-\mathrm{V}_{\mathrm{GO}}}{\mathrm{~V}_{\mathrm{t}}}\right)
\end{array}\right\} \quad \frac{1}{\mathrm{I}_{\mathrm{s}}}\left(\frac{\partial \mathrm{I}_{\mathrm{s}}}{\partial \mathrm{~T}}\right)=\frac{\partial\left(\ln \mathrm{I}_{\mathrm{s}}\right)}{\partial \mathrm{T}}=\frac{3}{\mathrm{~T}}+\frac{\mathrm{V}_{\mathrm{GO}}}{\mathrm{TV}_{\mathrm{t}}} \approx \frac{\mathrm{~V}_{\mathrm{GO}}}{\mathrm{TV}_{\mathrm{t}}}
$$

$$
\frac{\mathrm{d} v_{\mathrm{BE}}}{\mathrm{dT}} \approx \frac{\mathrm{~V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{GO}}}{\mathrm{~T}}=-2 \mathrm{mV} /{ }^{\circ} \mathrm{C} \text { at room temperature }
$$

$\left(\mathrm{V}_{\mathrm{GO}}=1.205 \mathrm{~V}\right.$ at room temperature and is called the bandgap voltage)
Temperature dependence of MOSFET in strong inversion:

$$
\begin{gathered}
\frac{\mathrm{dv}_{\mathrm{GS}}}{\mathrm{dT}}=\frac{\mathrm{dV}_{\mathrm{T}}}{\mathrm{dT}}+\sqrt{\frac{2 \mathrm{~L}}{\mathrm{WC}_{\mathrm{ox}}}} \frac{\mathrm{~d}}{\mathrm{dT}}\left(\sqrt{\frac{\mathrm{iD}^{\mu_{\mathrm{o}}}}{}}\right) \\
\mu_{\mathrm{o}}=\mathrm{KT}^{-1.5} \\
\mathrm{~V}_{\mathrm{T}}(\mathrm{~T})=\mathrm{V}_{\mathrm{T}}\left(\mathrm{~T}_{\mathrm{o}}\right)-\alpha\left(\mathrm{T}-\mathrm{T}_{\mathrm{o}}\right)
\end{gathered}
$$

Resistors:

$$
\frac{1}{R} \frac{d R}{d T} \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

## Bipolar-Resistance Voltage References

From previous work we know that,

$$
V_{R E F}=\frac{k T}{q} \ln \left(\frac{V_{D D}-V_{R E F}}{R I_{S}}\right)
$$

However, not only is $V_{R E F}$ a function of $T$, but $R$ and $I_{S}$ are also functions of $T$.


Fig. 4.5-9

$=\frac{V_{R E F}}{T}-\frac{V_{t}}{V_{D D^{-}}-V_{R E F}} \frac{d V_{R E F}}{d T}-V_{t}\left(\frac{d R}{R d T}+\frac{d I_{s}}{I_{s} d T}\right)=\frac{V_{R E F}-V_{G O}}{T}-\frac{V_{t}}{V_{D D^{-}}-V_{R E F}} \frac{d V_{R E F}}{d T}-\frac{3 V_{t}}{T}-\frac{V_{T}}{R} \frac{d R}{d T}$
$\therefore \quad \frac{d V_{R E F}}{d T}=\frac{\frac{V_{R E F^{-}} V_{G O}}{T}-V_{t} \frac{d R}{R d T}-\frac{3 V_{t}}{T}}{1+\frac{V_{t}}{V_{D D^{-}-V_{R E F}}}} \approx \frac{V_{R E F^{-}} V_{G O}}{T}-V_{t} \frac{d R}{R d T}-\frac{3 V_{t}}{T}$
$T C_{F}=\frac{1}{V_{R E F}} \frac{d V_{R E F}}{d T}=\frac{V_{R E F^{-}} V_{G O}}{V_{R E F} \cdot T}-\frac{V_{t}}{V_{R E F}} \frac{d R}{R d T}-\frac{3 V_{t}}{V_{R E F} \cdot T}$
If $V_{R E F}=0.6 \mathrm{~V}, V_{t}=0.026 \mathrm{~V}$, and the resistor is polysilicon, then at room temperature the $T C_{F}$ is

$$
T C_{F}=\frac{0.6-1.205}{0.6 \cdot 300}-\frac{0.026 \cdot 0.0015}{0.6}-\frac{3 \cdot 0.026}{0.6 \cdot 300}=-3361 \times 10^{-6}-65 \times 10^{-6}-433 \times 10^{-6}=-3859 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

## MOSFET Resistor Voltage Reference

From previous results we know that
$V_{R E F}=V_{G S}=V_{T}+\sqrt{\frac{2\left(V_{\left.D D^{-} V_{R E F}\right)}^{\beta R}\right.}{\beta R}} \quad$ or $V_{R E F}=V_{T}-\frac{1}{\beta R}+\sqrt{\frac{2\left(V_{\left.D D^{-} V_{T}\right)}^{\beta R}+\frac{1}{(\beta R)^{2}}\right.}{}}$
Note that $V_{R E F}, V_{T}, \beta$, and $R$ are all functions of temperature.
It can be shown that the $T C_{F}$ of this reference is

$$
\begin{aligned}
\frac{d V_{\mathrm{REF}}}{d T} & =\frac{-\alpha+\sqrt{\frac{V_{D D}-V_{\mathrm{REF}}}{2 \beta R}}\left(\frac{1.5}{T}-\frac{1}{R} \frac{d R}{d T}\right)}{1+\frac{1}{\sqrt{2 \beta R\left(V_{D D}-V_{\mathrm{REF}}\right)}}} \\
\therefore \quad & T C_{F}=\frac{-\alpha+\sqrt{\frac{V_{D D}-V_{\mathrm{REF}}}{2 \beta R}\left(\frac{1.5}{T}-\frac{1}{R} \frac{d R}{d T}\right)}}{V_{R E F}\left(1+\frac{1}{\sqrt{2 \beta R\left(V_{D D}-V_{\mathrm{REF}}\right)}}\right)}
\end{aligned}
$$

## Example 4.5-1 - Calculation of MOSFET-Resistor Voltage Reference $\boldsymbol{T C}_{\boldsymbol{F}}$

Calculate the temperature coefficient of the MOSFET-Resistor voltage reference where $\mathrm{W} / \mathrm{L}=2, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{R}=100 \mathrm{k} \Omega$ using the parameters of Table 3.1-2. The resistor, R , is polysilicon and has a tempco of 1500 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

## Solution

First, calculate $V_{R E F}$. Note that $\beta R=220 \times 10^{-6} \times 10^{5}=22$ and $\frac{d R}{R d T}=1500 \mathrm{ppm} / \mathrm{i} \mathrm{C}$
$\therefore \quad V_{R E F}=0.7-\frac{1}{22}+\sqrt{\frac{2(5-0.7)_{\circ}}{22}+\left\{\frac{1}{(22}\right)^{2}}=1.281 \mathrm{~V}$
Now, $\frac{d V_{R E F}}{d T}=\frac{-2.3 \times 10^{-3}+\sqrt{\frac{5-1.281}{2(22)}}\left(\frac{1.5}{300}-1500 \times 10^{-6}\right)}{1+\frac{1}{\sqrt{2(22)(5-1.281)}}}=-1.189 \times 10^{-3} \mathrm{~V} /{ }^{\circ} \mathrm{C}$
The fractional temperature coefficient is given by

$$
T C_{F}=-1.189 \times 10^{-3}\left(\frac{1}{1.281}\right)=-928 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

## Breakdown Diode Voltage Reference

Temperature characteristics were illustrated previously.
The temperature coefficient could be close to zero if the processing parameters could be appropriately chosen.



Variation of the temperature coefficient of the breakdown diode as a function of the breakdown voltage, BV

Fig. $4.5-10 \mathrm{~A}$

## Bootstrapped Current Source/Sink

Gate-source referenced source:
The output current was given as, $I_{\text {out }}=\frac{V_{T 1}}{R}+\frac{1}{\beta_{1} R^{2}}+\frac{1}{R} \sqrt{\frac{2 V_{T 1}}{\beta_{1} R}+\frac{1}{\left(\beta_{1} R\right)^{2}}}$
Although we could grind out the derivative of $I_{\text {out }}$ with respect to $T$, the temperature performance of this circuit is not that good to spend the time to do so. Therefore, let us assume that $V_{G S 1} \approx V_{T 1}$ which gives

$$
I_{\text {out }} \approx \frac{V_{T 1}}{R} \quad \Rightarrow \quad \frac{d I_{\text {out }}}{d T}=\frac{1}{R} \frac{d V_{T 1}}{d T}-\frac{1}{R^{2}} \frac{d R}{d T}
$$

In the resistor is polysilicon, then

$$
T C_{F}=\frac{1}{I_{\text {out }}} \frac{d I_{\text {out }}}{d T}=\frac{1}{V_{T 1}} \frac{d V_{T 1}}{d T}-\frac{1}{R} \frac{d R}{d T}=\frac{-\alpha}{V_{T 1}}-\frac{1}{R} \frac{d R}{d T}=\frac{-2.3 \times 10^{-3}}{0.7}-1.5 \times 10^{-3}=-4786 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

Base-emitter referenced source:
The output current was given as, $I_{\text {out }}=I_{2}=\frac{V_{B E 1}}{R}$
The $T C_{F}=\frac{1}{V_{B E 1}} \frac{d V_{B E 1}}{d T}-\frac{1}{R} \frac{d R}{d T}$
If $V_{B E 1}=0.6 \mathrm{~V}$ and the resistor is poly, then the $T C_{F}=\frac{1}{0.6}\left(-2 \times 10^{-3}\right)-1.5 \times 10^{-3}=-4833 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

## Technique to Make $\mathbf{g}_{\underline{m}}$ Dependent on a Resistor

Consider the following circuit with all transistor having a $\mathrm{W} / \mathrm{L}=10$.
This is a bootstrapped reference which creates a $\mathrm{V}_{\text {bias }}$ independent of $\mathrm{V}_{\mathrm{DD}}$. The two key equations are:

$$
\mathrm{I}_{3}=\mathrm{I}_{4} \Rightarrow \mathrm{I}_{1}=\mathrm{I}_{2}
$$

and

$$
\mathrm{v}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}+\mathrm{I}_{2} \mathrm{R}
$$

Solving for $\mathrm{I}_{2}$ gives:

$$
\begin{array}{ll} 
& \mathrm{I}_{2}=\frac{\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}}{\mathrm{R}}=\frac{1}{\mathrm{R}}\left(\sqrt{\frac{2 \mathrm{I}_{1}}{\beta_{1}}}-\sqrt{\frac{2 \mathrm{I}_{2}}{\beta_{2}}}\right)=\frac{\sqrt{2 \mathrm{I}_{1}}}{\mathrm{R} \sqrt{\beta_{1}}}\left(1-\frac{1}{2}\right) \\
\therefore & \sqrt{\mathrm{I}_{2}}=\frac{1}{\mathrm{R} \sqrt{2 \beta_{1}}} \Rightarrow \mathrm{I}_{2}=\mathrm{I}_{1}=\frac{1}{2 \beta_{1} \mathrm{R}^{2}}=\frac{1}{2 \cdot 24 \times 10^{-6} \cdot 10^{8}}=20.833 \mu \mathrm{~A}
\end{array}
$$

Now, $\mathrm{V}_{\text {bias }}$ can be written as

$$
\mathrm{V}_{\mathrm{bias}}=\mathrm{V}_{\mathrm{GS} 1}=\sqrt{\frac{2 \mathrm{I}_{2}}{\beta_{1}}}+\mathrm{V}_{\mathrm{TN}}=\frac{1}{\beta_{1} \mathrm{R}}+\mathrm{V}_{\mathrm{TN}}=\frac{1}{110 \times 10^{-6} \cdot 10 \cdot 10^{4}}+0.7=0.0909+0.7=0.7909 \mathrm{~V}
$$

Any transistor with $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\text {bias }}$ will have a current flow that is given by $1 / 2 B \mathrm{R}^{2}$. Therefore,

$$
\mathrm{g}_{\mathrm{m}}=\sqrt{2 \mathrm{I} \beta}=\sqrt{\frac{2 \beta}{2 ß \mathrm{R}^{2}}}=\frac{1}{\mathrm{R}} \Rightarrow \mathrm{~g}_{\mathrm{m}}=\frac{1}{\mathrm{R}}
$$

(This means that the temperature dependence of $g_{m}$ will be that of $1 / R$ which can be used to achieve temperature controlled performance.)

## Summary of Reference Performance

| Type of Reference | $S_{V_{D E F}}$ | $T C_{F}$ | Comments |
| :--- | :---: | :---: | :---: |
| Voltage division | 1 | Good if matched |  |
| MOSFET-R | $<1$ | $>1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  |
| BJT-R | $\ll 1$ | $>1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  |
| Breakdown Diode | Can be very small | BV too large |  |
| Bootstrap Gate-Source <br> Referenced | Good if currents <br> are matched | $>1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | Requires start-up <br> circuit |
| Bootstrap Base-emitter <br> Referenced | Good if currents <br> are matched | $>1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | Requires start-up <br> circuit |

- If one is careful, very good independence of power supply can be achieved
- None of the above references have the required temperature independence

Consider the following example:
A 10 bit ADC has a reference voltage of 1 V . The LSB is approximately 0.001 V . Therefore, the voltage reference must be stable to within $0.1 \%$. If a $100^{\circ} \mathrm{C}$ change in temperature is experienced, then the $T C_{F}$ must be $0.001 \% / \mathrm{C}$ or multiplying by $10^{4}$ gives a $T C_{F}=10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

## SECTION 4.6-BANDGAP REFERENCES

## Temperature Stable References

- The previous reference circuits failed to provide small values of temperature coefficient although sufficient power supply independence was achieved.
- This section introduces the bandgap voltage concept combined with power supply independence to create a very stable voltage reference in regard to both temperature and power supply variations.


## Bandgap Voltage Reference Principle

The principle of the bandgap voltage reference is to balance the negative temperature coefficient of a pn junction with the positive temperature coefficient of the thermal voltage, $V_{t}=k T / q$.
Concept:


Result: References with $T C_{F}$ 's approaching $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

## Derivation of the Temperature Coefficient of the Base-Emitter Voltage

To achieve small $\mathrm{TC}_{\mathrm{F}}$ 's we must know the $\mathrm{TC}_{\mathrm{F}}$ of $\mathrm{V}_{\mathrm{BE}}$ more precisely than approximately $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
1.) Start with the collector current density, $\mathrm{J}_{\mathrm{C}}$ :

$$
\mathrm{J}_{\mathrm{C}}=\frac{\mathrm{q} \overline{\mathrm{D}_{\mathrm{n}}} \mathrm{n}_{\mathrm{po}}}{\mathrm{~W}_{\mathrm{B}}} \exp \left(\frac{\mathrm{~V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{t}}}\right)
$$

where,

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}} / \text { Area }=\text { collector current density } \\
& \overline{\mathrm{D}_{\mathrm{n}}}=\text { average diffusion constant for electrons } \\
& \mathrm{W}_{\mathrm{B}}=\text { base width } \\
& \mathrm{V}_{\mathrm{BE}}=\text { base-emitter voltage } \\
& \mathrm{V}_{\mathrm{t}}=\frac{\mathrm{kT}}{\mathrm{q}} \\
& \quad \mathrm{k}=\text { Boltzmann's constant }\left(1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}\right) \\
& \quad \mathrm{T}=\text { Absolute temperature }
\end{aligned}
$$

$$
\mathrm{n}_{\mathrm{po}}=\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{A}}=\text { equilibrium concentration of electrons in the base }
$$

$$
\mathrm{n}_{\mathrm{i}}^{2}=\mathrm{DT}^{3} \exp \left(\frac{-\mathrm{V}_{\mathrm{GO}}}{\mathrm{~V}_{\mathrm{t}}}\right)=\text { intrinsic concentration of carriers }
$$

$\mathrm{D}=$ temperature independent constant
$\mathrm{V}_{\mathrm{GO}}=$ bandgap voltage of silicon $(1.205 \mathrm{~V})$
$\mathrm{N}_{\mathrm{A}}=$ acceptor impurity concentration

## Derivation of the Temperature Coefficient of the Base-Emitter Voltage - Continued

2.) Combine the above relationships into one:

$$
\mathrm{J}_{\mathrm{C}}=\frac{\mathrm{q} \overline{\mathrm{D}_{\mathrm{n}}}}{\mathrm{~N}_{\mathrm{A}} W_{\mathrm{B}}} \mathrm{DT}^{3} \exp \left(\frac{\mathrm{~V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{GO}}}{\mathrm{~V}_{\mathrm{t}}}\right)=\mathrm{AT}^{\gamma} \exp \left(\frac{\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{GO}}}{\mathrm{~V}_{\mathrm{t}}}\right)
$$

where, $\quad \gamma=3$
3.) The value of $\mathrm{J}_{C}$ at a reference temperature of $\mathrm{T}=\mathrm{T}_{0}$ is

$$
\mathrm{J}_{\mathrm{C} 0}=\mathrm{AT}_{0} \gamma_{\exp }\left[\frac{\mathrm{q}}{\mathrm{kT}}\left(\mathrm{~V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{GO}}\right)\right]
$$

while the value of $\mathrm{J}_{\mathrm{C}}$ at a general temperature, T , is

$$
\mathrm{J}_{\mathrm{C}}=\mathrm{AT} T^{\gamma} \exp \left[\frac{\mathrm{q}}{\mathrm{kT}}\left(\mathrm{~V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{GO}}\right)\right]
$$

4.) The ratio of $\mathrm{J}_{\mathrm{C}} / \mathrm{J}_{\mathrm{C} 0}$ can be expressed as,

$$
\frac{\mathrm{J}_{\mathrm{C}}}{\mathrm{~J}_{\mathrm{C} 0}}=\left(\frac{\mathrm{T}}{\mathrm{~T}_{0}}\right) \gamma^{\exp }\left[\frac{\mathrm{q}}{\mathrm{k}}\left(\frac{\mathrm{~V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{G} 0}}{\mathrm{~T}}-\frac{\mathrm{V}_{\mathrm{BE} 0}-\mathrm{V}_{\mathrm{G} 0}}{\mathrm{~T}_{0}}\right)\right]
$$

or

$$
\ln \left(\frac{\mathrm{J}_{\mathrm{C}}}{\mathrm{~J}_{\mathrm{C} 0}}\right)=\gamma \ln \left(\frac{\mathrm{T}}{\mathrm{~T}_{0}}\right)+\frac{\mathrm{q}}{\mathrm{kT}}\left[\mathrm{~V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{GO}}-\frac{\mathrm{T}}{\mathrm{~T}_{0}}\left(\mathrm{~V}_{\mathrm{BE} 0}-\mathrm{V}_{\mathrm{GO}}\right)\right]
$$

where $V_{B E 0}$ is the value of $V_{B E}$ at $T=T_{0}$.
5.) Solving for $\mathrm{V}_{\mathrm{BE}}$ from the above results gives,

$$
\mathrm{V}_{\mathrm{BE}}(\mathrm{~T})=\mathrm{V}_{\mathrm{GO}}\left(1-\frac{\mathrm{T}}{\mathrm{~T}_{0}}\right)+\mathrm{V}_{\mathrm{BE} 0}\left(\frac{\mathrm{~T}}{\mathrm{~T}_{0}}\right)+\frac{\gamma \mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}}\right)+\frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{~J}_{\mathrm{C}}}{\mathrm{~J}_{\mathrm{C} 0}}\right)
$$

## Derivation of the Temperature Coefficient of the Base-Emitter Voltage - Continued

6.) Next, assume $J_{C} \propto T \alpha$ and find $\partial V_{B E} / \partial T$.

$$
\frac{\partial \mathrm{V}_{\mathrm{BE}}}{\partial \mathrm{~T}}=\frac{\partial \mathrm{V}_{\mathrm{GO}}}{\partial \mathrm{~T}}\left(1-\frac{\mathrm{T}}{\mathrm{~T}_{0}}\right)-\frac{\mathrm{V}_{\mathrm{GO}}}{\mathrm{~T}_{0}}+\frac{\mathrm{V}_{\mathrm{BE} 0}}{\mathrm{~T}_{0}}+\frac{\gamma \mathrm{kT}}{\mathrm{q}} \cdot \frac{\partial \ln \left(\mathrm{~T}_{0} / \mathrm{T}\right)}{\partial \mathrm{T}}+\ln \left(\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right) \frac{\partial(\gamma \mathrm{kT} / \mathrm{q})}{\partial \mathrm{T}}+\frac{\mathrm{kT}}{\mathrm{q}}\left(\frac{\partial \ln \left(\mathrm{~J}_{\mathrm{C}} / \mathrm{J}_{\mathrm{C} 0}\right)}{\partial \mathrm{T}}\right)+\frac{\mathrm{k}}{\mathrm{q}} \ln \left(\frac{\mathrm{~J}_{\mathrm{C}}}{\mathrm{~J}_{\mathrm{C} 0}}\right)
$$

7.) Assume that $\mathrm{T}=\mathrm{T}_{0}$ which means $\mathrm{J}_{\mathrm{C}}=\mathrm{J}_{\mathrm{C} 0}$. Since, $\partial \mathrm{V}_{\mathrm{GO}} / \partial \mathrm{T}=0$,

$$
\frac{\partial \mathrm{V}_{\mathrm{BE}}}{\partial \mathrm{~T}}{\left.\underset{\mathrm{~T}=\mathrm{T}_{0}}{ }=-\frac{\mathrm{V}_{\mathrm{GO}}}{\mathrm{~T}_{0}}+\frac{\mathrm{V}_{\mathrm{BE} 0}}{\mathrm{~T}_{0}}+\frac{\gamma \mathrm{kT}}{\mathrm{q}} \cdot \frac{\partial \ln \left(\mathrm{~T}_{0} / \mathrm{T}\right)}{\partial \mathrm{T}}+\frac{\mathrm{kT}}{\mathrm{q}}\left(\frac{\partial \ln \left(\mathrm{~J}_{\mathrm{C}} / \mathrm{J}_{\mathrm{C} 0}\right)}{\partial \mathrm{T}}\right)\right) .}^{\partial \mathrm{T}^{2}}
$$

8.) Note that,

$$
\frac{\partial \ln \left(\mathrm{T}_{0} / \mathrm{T}\right)}{\partial \mathrm{T}}=\frac{\mathrm{T}}{\mathrm{~T}_{0}} \frac{\partial\left(\mathrm{~T}_{0} / \mathrm{T}\right)}{\partial \mathrm{T}}=\frac{\mathrm{T}}{\mathrm{~T}_{0}}\left(\frac{-\mathrm{T}_{0}}{\mathrm{~T}^{2}}\right)=\frac{-1}{\mathrm{~T}} \quad \text { and } \quad \frac{\partial \ln \left(\mathrm{J}_{\mathrm{C}} / \mathrm{J}_{\mathrm{C} 0}\right)}{\partial \mathrm{T}}=\frac{\mathrm{J}_{\mathrm{C} 0}}{\mathrm{~J}_{\mathrm{C}}} \frac{\partial\left(\mathrm{~J}_{\mathrm{C}} / \mathrm{J}_{\mathrm{C} 0}\right)}{\partial \mathrm{T}}=\frac{\mathrm{J}_{\mathrm{C} 0}}{\mathrm{~J}_{\mathrm{C}}}\left(\frac{\alpha}{\mathrm{~T}} \frac{\mathrm{~J}_{\mathrm{C}}}{\mathrm{~J}_{\mathrm{C} 0}}\right)=\frac{\alpha}{\mathrm{T}}
$$

Therefore,

Typical values of $\alpha$ and $\gamma$ are 1 and 3.2. Therefore, if $\mathrm{V}_{\mathrm{BE} 0}=0.6 \mathrm{~V}$, then at room temperature:

$$
\begin{aligned}
\frac{\partial \mathrm{V}_{\mathrm{BE}}}{\partial \mathrm{~T}}{ }_{\mathrm{T}=\mathrm{T}_{0}}^{\text {। }} & =\frac{0.6-1.205}{300}+(1-3.2)\left(\frac{0.026}{300}\right) \\
& =\frac{0.6-1.205-0.1092}{300}=-1.826 \mathrm{mV} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Derivation of the Temperature Coefficient of the Thermal Voltage ( $k T / q$ )
1.) Consider two identical pn junctions having different current densities,


$\Delta \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}=\frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{J}_{\mathrm{C} 1}}{\mathrm{~J}_{\mathrm{C} 2}}\right)$
2.) Find $\partial\left(\Delta \mathrm{V}_{\mathrm{BE}}\right) / \partial \mathrm{T}$,

$$
\frac{\partial\left(\Delta \mathrm{V}_{\mathrm{BE}}\right)}{\partial \mathrm{T}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{~T}} \ln \left(\frac{\mathrm{~J}_{\mathrm{C} 1}}{\mathrm{~J}_{\mathrm{C} 2}}\right)=\frac{\mathrm{k}}{\mathrm{q}} \ln \left(\frac{\mathrm{~J}_{\mathrm{C} 1}}{\mathrm{~J}_{\mathrm{C} 2}}\right)
$$

## Derivation of the Gain, $K$, for the Bandgap Voltage Reference

1.) In order to achieve a zero temperature coefficient at $T=T_{0}$, the following equation must be satisfied:

$$
0=\frac{\partial \mathrm{V}_{\mathrm{BE}}}{\partial \mathrm{~T}} \underset{\mathrm{~T}=\mathrm{T}_{0}}{\mathrm{I}}+\mathrm{K}^{\prime \prime} \frac{\partial\left(\Delta \mathrm{V}_{\mathrm{BE}}\right)}{\partial \mathrm{T}}
$$

where $\mathrm{K}^{\prime \prime}$ is a constant that satisfies the equation.
2.) Therefore, we get

$$
0=\mathrm{K}^{\prime \prime}\left(\frac{\mathrm{V}_{\mathrm{t} 0}}{\mathrm{~T}_{0}}\right) \ln \left(\frac{\mathrm{J}_{\mathrm{C} 1}}{\mathrm{~J}_{\mathrm{C} 2}}\right)+\frac{\mathrm{V}_{\mathrm{BE} 0}-\mathrm{V}_{\mathrm{GO}}}{\mathrm{~T}_{0}}+\frac{(\alpha-\gamma) \mathrm{V}_{\mathrm{t} 0}}{\mathrm{~T}_{0}}
$$

3.) Define $K=K^{\prime \prime} \ln \left(\frac{J_{C 1}}{\mathrm{~J}_{\mathrm{C} 2}}\right)$, therefore

$$
0=\mathrm{K}\left(\frac{\mathrm{~V}_{\mathrm{t} 0}}{\mathrm{~T}_{0}}\right)+\frac{\mathrm{V}_{\mathrm{BE} 0}-\mathrm{V}_{\mathrm{GO}}}{\mathrm{~T}_{0}}+\frac{(\alpha-\gamma) \mathrm{V}_{\mathrm{t} 0}}{\mathrm{~T}_{0}}
$$

4.) Solving for K gives $\mathrm{K}=\frac{\mathrm{V}_{\mathrm{GO}}-\mathrm{V}_{\mathrm{BE} 0}-\mathrm{V}_{\mathrm{t} 0}(\alpha-\gamma)}{\mathrm{V}_{\mathrm{t} 0}}$

Assuming that $\mathrm{J}_{\mathrm{C} 1} / \mathrm{J}_{\mathrm{C} 2}=\mathrm{A}_{\mathrm{E} 1} / \mathrm{A}_{\mathrm{E} 2}=10$ and $\mathrm{V}_{\mathrm{BE} 0}=0.6 \mathrm{~V}$ gives,

$$
\mathrm{K}=\frac{1.205-0.6+(2.2)(0.026)}{0.026}=25.469
$$

5.) The output voltage of the bandgap voltage reference is found as,

$$
\mathrm{V}_{\mathrm{REF}} \underset{\mathrm{~T}=\mathrm{T}_{0}}{\mathrm{I}}=\mathrm{V}_{\mathrm{BE} 0}+\mathrm{KV}_{\mathrm{t} 0}=\mathrm{V}_{\mathrm{BE} 0}+\mathrm{V}_{\mathrm{GO}}-\mathrm{V}_{\mathrm{BE} 0}+(\gamma-\alpha) \mathrm{V}_{\mathrm{t} 0} \quad \text { or } \quad \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{GO}}+(\gamma-\alpha) \mathrm{V}_{\mathrm{t} 0}
$$

For the previous values, $\mathrm{V}_{\mathrm{REF}}=1.205+0.026(2.2)=1.262 \mathrm{~V}$.

## Variation of the Bandgap Reference Voltage with respect to Temperature

The previous derivation is only valid at a given temperature, $\mathrm{T}_{0}$. As the temperature changes away from $\mathrm{T}_{0}$, the value of $\partial \mathrm{V}_{\mathrm{REF}} / \partial \mathrm{T}$ is no longer zero.
Illustration:


Bandgap Curvature Correction will be necessary for low ppm/ ${ }^{\circ} \mathrm{C}$ bandgap references.

## Classical Widlar Bandgap Voltage Reference ${ }^{\dagger}$



Operation:

$$
\begin{array}{ll} 
& \mathrm{V}_{\mathrm{BE} 1}=\mathrm{V}_{\mathrm{BE} 2}+\mathrm{I}_{2} \mathrm{R}_{3} \\
\text { gives } \\
\text { But, } & \Delta \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}=\mathrm{I}_{2} \mathrm{R}_{3}
\end{array}
$$

$$
\Delta \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{t}} \ln \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{\mathrm{s} 1}}\right)-\mathrm{V}_{\mathrm{t}} \ln \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{\mathrm{s} 2}}\right)=\mathrm{V}_{\mathrm{t}} \ln \left(\frac{\mathrm{I}_{1} \mathrm{I}_{\mathrm{s} 2}}{\mathrm{I}_{2} \mathrm{I}_{\mathrm{s} 1}}\right)
$$

Assume $V_{B E 1} \approx V_{B E 3}$, we get $I_{1} R_{1}=I_{2} R_{2}$
Therefore,

$$
\mathrm{I}_{2}=\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{3}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{R}_{3}} \ln \left(\frac{\mathrm{I}_{1} \mathrm{I}_{\mathrm{s} 2}}{\mathrm{I}_{2} \mathrm{I}_{\mathrm{s}}}\right)=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{R}_{3}} \ln \left(\frac{\mathrm{R}_{2} \mathrm{I}_{\mathrm{s} 2}}{\mathrm{R}_{1} \mathrm{I}_{\mathrm{s} 1}}\right)
$$

Now we can express VREF as

$$
\mathrm{V}_{\mathrm{REF}}=\mathrm{I}_{2} \mathrm{R}_{2}+\mathrm{V}_{\mathrm{BE} 3}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{t}} \ln \left(\frac{\mathrm{R}_{2} \mathrm{I}_{\mathrm{s} 2}}{\mathrm{R}_{1} \mathrm{I}_{\mathrm{s} 1}}\right)+\mathrm{V}_{\mathrm{BE} 3}=\mathrm{KV}_{\mathrm{t}}+\mathrm{V}_{\mathrm{BE}}
$$

Design $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{I}_{\mathrm{s} 1}$, and $\mathrm{I}_{\mathrm{s} 2}$ to get the desired K .
Example:
Let $\mathrm{K}=25$ and $\mathrm{I}_{\mathrm{s} 2}=10 \mathrm{I}_{\mathrm{s} 1}$ and design $\mathrm{R}_{1}, \mathrm{R}_{2}$, and $\mathrm{R}_{3}$. Choose $\mathrm{R}_{2}=10 \mathrm{R}_{1}=10 \mathrm{k} \Omega$. $\ln (100)=4.602$.
Therefore $\mathrm{R}_{2} / \mathrm{R}_{3}=25 / 4.602$ or $\mathrm{R}_{3}=\mathrm{R}_{2} / 5.4287=1.842 \mathrm{k} \Omega$.
${ }^{\dagger}$ R.J. Widlar, "New Developments in IC Voltage Regulators," IEEE J. of Solid-State Circuits, Vol. SC-6, pp. 2-7, February 1971.

Chapter 4 - Subcircuits (3/22/99)

CMOS Analog Circuit Design

## A CMOS Bandgap Reference using PNP Lateral BJTs

Bootstrapped Voltage Reference using PNP Laterals-


$$
\mathrm{I}_{2}=\frac{\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}}{\mathrm{R}_{2}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{R}_{2}}\left[\ln \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{\mathrm{s} 1}}\right)-\ln \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{\mathrm{s} 2}}\right)\right]=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{R}_{2}} \ln \left(\frac{\mathrm{I}_{\mathrm{s} 2}}{\mathrm{I}_{\mathrm{s} 1}}\right)=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{R}_{2}} \ln \left(\frac{\mathrm{~A}_{\mathrm{E} 2}}{\mathrm{~A}_{\mathrm{E} 1}}\right)
$$

if $\mathrm{I}_{1}=\mathrm{I}_{2}$ which is forced by the current mirror consisting of M1 and M2.

$$
\therefore \quad \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{BE} 1}+\mathrm{I}_{1} \mathrm{R}_{1}=\mathrm{V}_{\mathrm{BE} 1}+\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \ln \left(\frac{\mathrm{~A}_{\mathrm{E} 2}}{\mathrm{~A}_{\mathrm{E} 1}}\right)\right) \mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{BE} 1}+\mathrm{KV}_{\mathrm{t}}
$$

While an op amp could be used to make $I_{1}=I_{2}$ it suffers from offset and noise and leads to deterioration of the bandgap temperature performance.

## A CMOS Bandgap Reference using Substrate PNP BJTs



Operation:
The cascode mirror (M5-M8) keeps the currents in Q1, Q 2 , and Q3 identical. Thus,
$\mathrm{V}_{\mathrm{BE} 1}=\mathrm{I}_{2} \mathrm{R}+\mathrm{V}_{\mathrm{BE} 2}$
or

$$
\mathrm{I}_{2}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{R}} \ln _{(\mathrm{n}} \mathrm{n}^{2}
$$

Therefore,
$\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{BE}} 3+\mathrm{I}_{2}(\mathrm{kR})=\mathrm{V}_{\mathrm{BE}} 3+\mathrm{k} \mathrm{V}_{\mathrm{t}} \cdot \ln (\mathrm{n})$
Use $k$ and $n$ to design the desired value of $K$.

## Weak Inversion Bandgap Voltage Reference

Circuit:


Analysis:
For the p-channel transistors:
$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DO}}(\mathrm{W} / \mathrm{L}) \exp \left(\frac{\mathrm{V}_{\mathrm{BG}}}{\mathrm{n} \mathrm{V}_{\mathrm{t}}}\right)\left[\exp \left(\frac{-\mathrm{V}_{\mathrm{BS}}}{\mathrm{V}_{\mathrm{t}}}\right)-\exp \left(\frac{-\mathrm{V}_{\mathrm{BD}}}{\mathrm{V}_{\mathrm{t}}}\right)\right]$
where $V_{t}=k T / q$.
If $V_{B D} \gg V_{t}$, then $I_{D}=I_{D O}(W / L) \exp \left(\frac{V_{B G}}{n V_{t}}-\frac{V_{B S}}{V_{t}}\right)$.
The various transistor currents can be expressed as:

$$
\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=\mathrm{I}_{\mathrm{DO}}\left(\mathrm{~W}_{2} / \mathrm{L}_{2}\right) \exp \left(\frac{\mathrm{V}_{\mathrm{BG} 2}}{\mathrm{nV}_{\mathrm{t}}}\right) \text { and } \mathrm{I}_{\mathrm{D} 3}=\mathrm{I}_{\mathrm{D} 4}=\mathrm{I}_{\mathrm{DO}}\left(\mathrm{~W}_{4} / \mathrm{L}_{4}\right) \exp \left(\frac{\mathrm{V}_{\mathrm{BG} 4}}{\mathrm{n}_{\mathrm{t}}}-\frac{\mathrm{V}_{\mathrm{BS} 4}}{\mathrm{~V}_{\mathrm{t}}}\right)
$$

Note that $\mathrm{V}_{\mathrm{BG} 2}=\mathrm{V}_{\mathrm{BG} 4}$ and $\mathrm{V}_{\mathrm{BS} 4}=\mathrm{V}_{\mathrm{R} 1}$.
Therefore,

$$
\frac{\mathrm{I}_{\mathrm{D} 1}}{\mathrm{I}_{\mathrm{D} 3}}=\frac{\mathrm{W}_{2} / \mathrm{L}_{2}}{\mathrm{~W}_{4} / \mathrm{L}_{4}} \exp \left(\frac{\mathrm{~V}_{\mathrm{R} 1}}{\mathrm{~V}_{\mathrm{t}}}\right)
$$

where

$$
\mathrm{V}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{t}} \ln \left(\frac{\mathrm{~W}_{1} \mathrm{~W}_{4} \mathrm{~L}_{2} \mathrm{~L}_{3}}{\mathrm{~L}_{1} \mathrm{~L}_{4} \mathrm{~W}_{2} \mathrm{~W}_{3}}\right) \quad \text { and } \quad \mathrm{I}_{\mathrm{R} 1}=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}}
$$

## Weak Inversion Bandgap Voltage Reference - Continued

The reference voltage can be expressed as,

$$
\mathrm{V}_{\mathrm{REF}}=\mathrm{R}_{2} \mathrm{I}_{6}+\mathrm{V}_{\mathrm{BE} 5}
$$

However,

$$
\mathrm{I}_{6}=\frac{\mathrm{W}_{6} \mathrm{~L}_{3}}{\mathrm{~L}_{6} \mathrm{~W}_{3}} \quad \mathrm{I}_{\mathrm{R} 1}=\frac{\mathrm{W}_{6} \mathrm{~L}_{3}}{\mathrm{~L}_{6} \mathrm{~W}_{3}} \frac{\mathrm{~V}_{\mathrm{t}}}{\mathrm{R}_{1}} \ln \left(\frac{\mathrm{~W}_{1} \mathrm{~W}_{4} \mathrm{~L}_{2} \mathrm{~L}_{3}}{\mathrm{~L}_{1} \mathrm{~L}_{4} \mathrm{~W}_{2} \mathrm{~W}_{3}}\right) .
$$

Substituting $\mathrm{I}_{6}$ and the previously derived expression for $\mathrm{V}_{\mathrm{BE}}(\mathrm{T})$ in $\mathrm{V}_{\text {REF }}$ gives,

$$
\mathrm{V}_{\mathrm{REF}}=\frac{\mathrm{W}_{6} \mathrm{~L}_{3}}{\mathrm{~L}_{6} \mathrm{~W}_{3}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \mathrm{~V}_{\mathrm{t}} \ln \left(\frac{\mathrm{~W}_{1} \mathrm{~W}_{4} \mathrm{~L}_{2} \mathrm{~L}_{3}}{\mathrm{~L}_{1} \mathrm{~L}_{4} \mathrm{~W}_{2} \mathrm{~W}_{3}}\right)+\mathrm{V}_{\mathrm{GO}}\left(1-\frac{\mathrm{T}}{\mathrm{~T}_{0}}\right)+\mathrm{V}_{\mathrm{BE} 0}\left(\frac{\mathrm{~T}}{\mathrm{~T}_{0}}\right)+3 \mathrm{~V}_{\mathrm{t}} \ln \left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}}\right)
$$

To achieve $\partial \mathrm{V}_{\mathrm{REF}} / \partial \mathrm{T}=0$ at $\mathrm{T}=\mathrm{T}_{0}$, we get

$$
\frac{\partial \mathrm{V}_{\mathrm{REF}}}{\partial \mathrm{~T}}=\left(\frac{\mathrm{k}}{\mathrm{q}}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)\left(\frac{\mathrm{W}_{6} \mathrm{~L}_{3}}{\mathrm{~L}_{6} \mathrm{~W}_{3}}\right) \ln \left(\frac{\mathrm{W}_{1} \mathrm{~W}_{4} \mathrm{~L}_{2} \mathrm{~L}_{3}}{\mathrm{~L}_{1} \mathrm{~L}_{4} \mathrm{~W}_{2} \mathrm{~W}_{3}}\right)-\frac{\mathrm{V}_{\mathrm{GO}}}{\mathrm{~T}_{0}}+\frac{\mathrm{V}_{\mathrm{BE} 0}}{\mathrm{~T}_{0}}+\frac{3 \mathrm{k}}{\mathrm{q}}
$$

Therefore,

$$
\frac{\mathrm{R}_{2} \mathrm{~W}_{6} \mathrm{~L}_{3}}{\mathrm{R}_{1} \mathrm{~L}_{6} \mathrm{~W}_{3}} \ln \left(\frac{\mathrm{~W}_{1} \mathrm{~W}_{4} \mathrm{~L}_{2} \mathrm{~L}_{3}}{\mathrm{~L}_{1} \mathrm{~L}_{4} \mathrm{~W}_{2} \mathrm{~W}_{3}}\right)=\frac{\mathrm{q}}{\mathrm{kT}_{0}}\left(\mathrm{~V}_{\mathrm{GO}}-\mathrm{V}_{\mathrm{BE} 0}\right)-3
$$

Under the above constraint, $V_{\text {REF }}$ has an approximate zero value of temperature coefficient at $\mathrm{T}=\mathrm{T}_{0}$ and has a value of

$$
\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{GO}}+\frac{3 \mathrm{kT}}{\mathrm{q}}\left[1+\ln \left(\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right)\right]=\mathrm{V}_{\mathrm{GO}}+\frac{3 \mathrm{kT}}{\mathrm{q}}
$$

Practical values of $\partial \mathrm{V}_{\mathrm{REF}} / \partial \mathrm{T}$ for the weak inversion bandgap are less than $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Chapter 4 - Subcircuits (3/22/99)

## Curvature Correction Techniques:

- Squared PTAT Correction:


Temperature coefficient $\approx 1-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

- $V_{B E}$ loop
M. Gunaway, et. al., "A Curvature-Corrected Low-Voltage Bandgap Reference," IEEE Journal of Solid-State Circuits, vol. 28, no. 6, pp. 667-670, June 1993.
- $\beta$ compensation
I. Lee et. al., "Exponential Curvature-Compensated BiCMOS Bandgap References," IEEE Journal of Solid-State Circuits, vol. 29, no. 11, pp. 1396-1403, Nov. 1994.
- Nonlinear cancellation
G.M. Meijer et. al., "A New Curvature-Corrected Bandgap Reference," IEEE Journal of Solid-State Circuits, vol. 17, no. 6, pp. 1139-1143, December 1982.


## $\underline{V}_{\underline{B E}}$ Loop Curvature Correction Technique

Circuit:

where

$$
\begin{aligned}
& V_{t}=k T / q \\
& I_{c 1} \text { and } I_{c 2} \text { are the collector currents of } \mathrm{Q}_{\mathrm{n} 1} \text { and } \mathrm{Q}_{\mathrm{n} 2}, \text { respectively } \\
& R_{x}=\text { a resistor used to define } I_{P T A T} \\
\therefore \quad & V_{R E F}=\left[\frac{V_{B E}}{R_{2}}+\frac{V_{t}}{R_{3}} \ln \left(\frac{2 I_{P T A T}}{I_{N L}+I_{\text {constant }}}\right)+I_{P T A T}\right] R_{1}
\end{aligned}
$$

Temperature coefficient $\approx 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ with a total quiescent current of $95 \mu \mathrm{~A}$.

## ß Compensation Curvature Correction Technique

Circuit:


Operation:

$$
V_{R E F}=V_{B E}+\left(A T+\frac{B T}{(1+\beta)}\right) R \approx V_{B E}+\left(A T+\frac{B T}{\beta}\right) R
$$

where
$A$ and $B$ are constant
$T=$ temperature
The temperature dependence of $\beta$ is

$$
\begin{aligned}
\beta(T) \propto e^{-1 / T} \Rightarrow \beta(T)=C e^{-1 / T} \\
\therefore V_{R E F}=V_{B E}(T)+\left(A T+\frac{B T e^{1 / T}}{C}\right)
\end{aligned}
$$

Not good for small values of $V_{i n}$.

$$
V_{\text {in }} \geq V_{R E F}+V_{\text {sat. }}=V_{G O}+V_{\text {sat. }}=1.4 \mathrm{~V}
$$

## Nonlinear Cancellation Curvature Correction Technique

Objective: Eliminate nonlinear term from the base-emitter.
Result: $0.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Operation: From above,

$$
V_{R E F}=V_{P T A T}+4 V_{B E}\left(I_{P T A T}\right)-3 V_{B E}\left(I_{\text {Constant }}\right)
$$

Note that,

$$
\begin{array}{lll}
\text { Note that, } & I_{P T A T} \Rightarrow I_{c} \propto T^{1} & \Rightarrow \alpha=1 \\
\text { and } & I_{\text {constant }} \Rightarrow I_{c} \propto T^{0} & \Rightarrow \alpha=0
\end{array}
$$

Previously we found,
$V_{B E}(T) \approx V_{G O}-\frac{T}{T_{0}}\left[V_{G O}-V_{B E}\left(T_{0}\right)_{]}-(\gamma-\alpha) V_{t} \ln \left(\frac{T}{T_{0}}\right)\right.$
so that
$V_{B E}\left(I_{P T A T}\right)=V_{G O}-\frac{T}{T_{0}}\left[V_{G O}-V_{B E}\left(T_{0}\right)_{]}-(\gamma-1) V_{t} \ln \left(\frac{T}{T_{0}}\right)\right.$
and

$$
V_{B E}\left(I_{\text {Constant }}\right)=V_{G O}-\frac{T}{T_{0}}\left[V_{G O}-V_{B E}\left(T_{0}\right)_{]}-\gamma V_{t} \ln \left(\frac{T}{T_{0}}\right)\right.
$$



Conventional Bandgap Reference


Curvature Corrected
Bandgap Reference
Fig. 4.6-12
$V_{R E F}(T)=V_{P T A T}+V_{G O}-\frac{T}{T_{0}}\left[V_{G O}-V_{B E}\left(T_{0}\right)\right]-[\gamma-4] V_{t} \ln \left(\frac{T}{T_{0}}\right)$
If $\gamma \approx 4$, then $V_{R E F}(T) \approx V_{P T A T}+V_{G O}\left(1-\frac{T}{T_{0}}\right)+V_{B E}\left(T_{0}\right) \frac{T}{T_{0}}$

Chapter 4 - Subcircuits (3/22/99)

CMOS Analog Circuit Design

## Other Characteristics of Bandgap Voltage References

Noise
Voltage references for high-resolution $\mathrm{A} / \mathrm{D}$ converters are particularly sensitive to noise.
Noise sources: Op amp, resistors, switches, etc.

## PSRR

Maximize the PSRR of the op amp.

## Offset Voltages

Becomes a problem when op amps are used.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BE} 2}=\mathrm{V}_{\mathrm{BE} 1}+\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{OS}} \\
& \Delta \mathrm{~V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}=\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{t}} \ln \left(\frac{\mathrm{I}_{2} \mathrm{~A}_{\mathrm{E} 1}}{\mathrm{I}_{1} \mathrm{~A}_{\mathrm{E} 2}}\right) \\
& \mathrm{I}_{2} \mathrm{R}_{2}=\mathrm{I}_{1} \mathrm{R}_{3}+\mathrm{V}_{\mathrm{OS}}
\end{aligned}
$$

or

$$
\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}-\frac{\mathrm{V}_{\mathrm{OS}}}{\mathrm{I}_{1} \mathrm{R}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}\left(1+\frac{\mathrm{V}_{\mathrm{OS}}}{\mathrm{I}_{1} \mathrm{R}_{3}}\right)
$$

Therefore,


$$
\mathrm{V}_{\mathrm{R} 1}=-\mathrm{V}_{\mathrm{OS}}+\mathrm{V}_{\mathrm{t}} \ln \left[\frac{\mathrm{R}_{2} \mathrm{~A}_{\mathrm{E} 1}}{\mathrm{R}_{3} \mathrm{~A}_{\mathrm{E} 2}}\left(1+\frac{\mathrm{V}_{\mathrm{OS}}}{\mathrm{I}_{1} \mathrm{R}_{3}}\right)\right]
$$

$\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{OS}}+\mathrm{I}_{2} \mathrm{R}_{2}=\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{OS}}+\left(\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}}\right) \mathrm{R}_{2}=\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{OS}}+\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right) \mathrm{V}_{\mathrm{R} 1}$

$$
\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{OS}}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \mathrm{~V}_{\mathrm{t}} \ln \left[\frac{\mathrm{R}_{2} \mathrm{~A}_{\mathrm{E}} 1}{\left.\mathrm{R}_{3} \mathrm{~A}_{\mathrm{E} 2}\left(1-\frac{\mathrm{V}_{\mathrm{OS}}}{\mathrm{I}_{1} \mathrm{R}_{3}}\right)\right]}\right.
$$

## How do you get a Stable Reference Current from the Bandgap?

Assume that a temperature stable reference voltage is available (i.e. bandgap reference) and use the zero TC NMOS current sink.
The problem is that $V_{R E F}$ may not be equal to the value of $V_{G S}$ that gives zero TC.


$$
V_{G S}=I_{R 2} R_{2}=R_{2}\left(\frac{V_{R E F}}{R_{1}}\right)=\left(\frac{R_{2}}{R_{1}}\right) V_{R E F}
$$

$$
\therefore \quad \frac{d V_{G S}}{d T}=\left(\frac{R_{2}}{R_{1}}\right) \frac{d V_{R E F}}{d T}+\frac{V_{R E F}}{R_{1}} \frac{d R_{2}}{d T}-\frac{R_{2}}{R_{1}^{2}} \frac{d R_{1}}{d T}=\frac{R_{2}}{R_{1}}\left[\frac{d V_{R E F}}{d T}+\frac{d R_{2}}{d T}-\frac{d R_{1}}{d T}\right]
$$

If the temperature coefficients of $R_{1}$ and $R_{2}$ are equal $\left(\frac{d R_{1}}{d T}=\frac{d R_{2}}{d T}\right)$, then

$$
\frac{d V_{G S}}{d T}=\frac{R_{2}}{R_{1}} \frac{d V_{R E F}}{d T} \text { and } V_{G S} \text { is proportional to the temperature dependence of } V_{R E F} \text {. }
$$

If the MOSFET is biased at the zero TC point, then the current should have the same dependence on temperature as $V_{R E F}$.

Chapter 4 - Subcircuits (3/22/99)

Practical Aspects of Temperature-Independent and Supply-Independent Biasing
A temperature-independent and supply-independent current source and its distribution:


Constant current:

$$
I_{R E F}=\frac{V_{B G}}{R_{\text {ext }}} \quad \text { where } \quad V_{B G}=V_{B E 3}+I_{P T A T} R_{2}=V_{B E 3}+\frac{V_{T}}{R_{1}} \ln (n) \cdot R_{2}
$$

## Practical Aspects of Bias Distribution Circuits - Continued

Distribution of the current avoids change in bias voltage due to $I R$ drop in bias lines.
Slave bias circuit:


## SUMMARY OF VOLTAGE AND CURRENT REFERENCES

- Reasonably good, simple references are possible
- Best power supply sensitivity is approximately 0.01
( $10 \%$ change in power supply causes a $0.1 \%$ change in reference)
- Typical simple reference temperature dependence is $\approx 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Can obtain zero temperature coefficient over a limited range of operation
- Bandgap voltage references can achieve temperature dependence less than $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Correction of second-order effects in the bandgap voltage reference can achieve very stable $\left(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ voltage references.
- Watch out for second-order effects such as noise when using the bandgap voltage reference in sensitive applications.

We will examine bandgap voltage references once again when we consider low voltage circuits in Section 6 of Chapter 7.

## CHAPTER 4 - SUMMARY

- This chapter has covered the analysis and design of sub-blocks or subcircuits which includes
- Switches
- MOS diode and floating resistor realizations
- Current sinks and sources
- Current mirrors (amplifiers)
- Current and voltage references
- Bandgap reference
- Subcircuits represent primitives of circuit design and do not stand alone
- The current sink/source is a very important subcircuit which is used for biases and ac loads
- A current sink/source is characterized by
1.) The independence of the current on the voltage across it ( $r_{\text {out }}$ )
2.) The range of voltage over which the current is not independent of the voltage ( $V_{M I N}$ )
- A current mirror is characterized by
1.) The independence of the output current on the voltage across it ( $r_{\text {out }} \rightarrow$ large)
2.) The range of output voltage over which the output current is not independent ( $V_{\text {MIN }}$ (out))
3.) The independence of the input voltage on the input current ( $r_{i n} \rightarrow$ small $)$
4.) The range of input voltage over which the input current is independent ( $V_{\text {MIN }}(\mathrm{in})$ )
5.) The accuracy of the current out as a function of the current in ratio.
- A voltage or current reference is independent of power supply and temperature
- The bandgap reference is the best realization of a voltage reference


[^0]:    ${ }^{\dagger}$ T.L. Brooks and A.L. Westwick, "A Low-Power Differential CMOS Bandgap Reference," Proc. of IEEE Inter. Solid-State Circuits Conf., Feb. 1994, pp. 248-249.

