CHAPTER 5 - CMOS AMPLIFIERS

Chapter Outline

5.1 Inverters

5.2 Differential Amplifiers

5.3 Cascode Amplifiers

5.4 Current Amplifiers

5.5 Output Amplifiers

5.6 High-Gain Architectures

Goal

To develop an understanding of the amplifier building blocks used in CMOS analog circuit design.

Design Hierarchy

Fig. 5.0-1

Illustration of Hierarchy in Analog Circuits for an Op Amp

Fig. 5.0-2

Active Load Amplifiers

What is an active load amplifier?

It is a combination of any of the above transconductors and loads to form an amplifier. (Remember that the above are only some of the examples of transconductors and loads.)

SECTION 5.1-CMOS INVERTING AMPLIFIERS

Characterization of Amplifiers

Amplifiers will be characterized by the following properties:

- Large-signal voltage transfer characteristics
- Large-signal voltage swing limitations
- Small-signal, frequency independent performance
- Gain
- Input resistance
- Output resistance
- Small-signal, frequency response
- Other properties
- Noise
- Power dissipation
- Etc.

Inverters

The inverting amplifier is an amplifier which amplifies and inverts the input signal. The inverting amplifier generally has the source on ac ground or the common-source configuration.
Various types of inverting CMOS amplifiers:

We will consider:

- Active PMOS Load Inverter (active load inverter)
- Current Source Load Inverter
- Push-pull Inverter

Voltage Transfer Characteristic of the Active Load Inverter

The boundary between active and saturation operation for M1 is

$$
v_{D S 1} \geq v_{G S 1}-V_{T N} \quad \rightarrow \quad v_{O U T} \geq v_{I N}-0.7 \mathrm{~V}
$$

Large-Signal Voltage Swing Limits of the Active Load Inverter

Maximum output voltage, $v_{O U T}(\max)$:

$$
V_{\text {OUT }}(\max) \cong V_{D D}-\left|V_{T P}\right|
$$

(ignores subthreshold current influence on the MOSFET)
Minimum output voltage, vOUT (min) :

$$
\text { Assume that M1 is nonsaturated and that } V_{T 1}=\left|V_{T 2}\right|=V_{T} \text {. }
$$

$$
v_{D S 1} \geq v_{G S 1}-V_{T N} \quad \rightarrow \quad v_{O U T} \geq v_{I N}-0.7 \mathrm{~V}
$$

The current through M1 is

$$
i_{D}=\beta_{1}\left(\left(v_{G S 1}-V_{T}\right) v_{D S 1}-\frac{v_{D S 1}^{2}}{2}\right)=\beta_{1}\left(\left(V_{D D}-V_{T}\right)\left(v_{O U T}\right)-\frac{\left(v_{O U T}\right)^{2}}{2}\right)
$$

and the current through M2 is

$$
i_{D}=\frac{\beta_{2}}{2}\left(v_{S G 2}-V_{T}\right)^{2}=\frac{\beta_{2}}{2}\left(V_{D D}-v_{\mathrm{OUT}}-V_{T}\right)^{2}=\frac{\beta_{2}}{2}\left(v_{\text {OUT }}+V_{T}-V_{D D}\right)^{2}
$$

Equating these currents gives the minimum $v_{O U T}$ as,

$$
v_{O U T}(\min)=V_{D D}-V_{T}-\frac{V_{D D}-V_{T}}{\sqrt{1+\left(\beta_{2} / \beta_{1}\right)}}
$$

Small-Signal Midband Performance of the Active Load Inverter

The development of the small-signal model for the active load inverter is shown below:

Sum the currents at the output node to get,

$$
g_{m 1} v_{\text {in }}+g_{d s 1} v_{\text {out }}+g_{m 2} v_{\text {out }}+g_{d s 2} v_{\text {out }}=0
$$

Solving for the voltage gain, $v_{\text {out }} / v_{\text {in }}$, gives

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-g_{m 1}}{g_{d s 1}+g_{d s 2}+g_{m 2}} \cong-\frac{g_{m 1}}{g_{m 2}}=-\left(\frac{K_{N}^{\prime} W_{1} L_{2}}{K_{P}^{\prime} P L_{1} W_{2}}\right)^{1 / 2}
$$

The small-signal output resistance can also be found from the above by letting $v_{\text {in }}=0$ to get,

$$
R_{\text {out }}=\frac{1}{g_{d s 1}+g_{d s 2}+g_{m 2}} \cong \frac{1}{g_{m 2}}
$$

Frequency Response of the MOS Diode Load Inverter

Incorporation of the parasitic capacitors into the small-signal model:
If we assume the input voltage has a small source resistance, then we can write the following:

$$
\begin{aligned}
& s C_{M}\left(V_{\text {out }}-V_{\text {in }}\right)+g_{m} V_{\text {in }} \\
& \quad+G_{\text {out }} V_{\text {out }}+s C_{\text {out }} V_{\text {out }}=0
\end{aligned}
$$

Fig. 320-04
$\therefore \quad V_{\text {out }}\left(G_{\text {out }}+s C_{M}+s C_{\text {out }}\right)=-\left(g_{m}-s C_{M}\right) V_{\text {in }}$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-\left(g_{m}-s C_{M}\right)}{G_{\text {out }}+s C_{M}+s C_{\text {out }}}=-g_{m} R_{\text {out }}\left[\frac{1-\frac{s C_{M}}{g_{m}}}{1+s R_{\text {out }}\left(\mathrm{C}_{\mathrm{M}}+C_{\text {out }}\right)}\right]=\frac{-g_{m} R_{\text {out }}\left(1-\frac{s}{z_{1}}\right)}{1+\frac{s}{p_{1}}}
$$

where

$$
g_{m}=g_{m 1}, \quad p_{1}=\frac{-1}{R_{\text {out }}\left(C_{\text {out }}+C_{M}\right)}, \quad \text { and } \quad z_{1}=\frac{g_{m 1}}{C_{M}}
$$

and

$$
R_{\text {out }}=\left[g_{d s 1}+g_{d s 2}+g_{m 2}\right]^{-1} \cong \frac{1}{g_{m 2}}, \quad C_{M}=C_{g d 1}, \quad \text { and } \quad C_{o u t}=C_{b d 1}+C_{b d 2}+C_{g s 2}+C_{L}
$$

Frequency Response of the MOS Diode Load Inverter - Continued

If $\left|p_{1}\right|<z_{1}$, then the -3 dB frequency is approximately equal to $\left[R_{\text {out }}\left(C_{\text {out }}+C_{M}\right)\right]^{-1}$.

Observation:
The poles in a MOSFET circuit can be found by summing the capacitance connected to a node and multiplying this capacitance times the equivalent resistance from this node to ground and inverting the product.

Example 5.1-1 - Performance of an Active Resistor-Load Inverter

Calculate the output-voltage swing limits for $V_{D D}=5$ volts, the small-signal gain, the output resistance, and the -3 dB frequency of active load inverter if $\left(\mathrm{W}_{1} / \mathrm{L}_{1}\right)$ is $2 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and $\mathrm{W}_{2} / \mathrm{L}_{2}=1 \mu \mathrm{~m} / 1 \mu \mathrm{~m}, C_{g d 1}=100 \mathrm{fF}, C_{b d 1}=200 \mathrm{fF}, C_{b d 2}=100 \mathrm{fF}, C_{g s 2}=200 \mathrm{fF}, C_{L}=1$ pF , and $I_{D 1}=I_{D 2}=100 \mu \mathrm{~A}$, using the parameters in Table 3.1-2.

Solution

From the above results we find that:
$\operatorname{VOUT}(\max)=4.3$ volts
$\operatorname{voUT}_{\text {OU }}(\mathrm{min})=0.418$ volts
Small-signal voltage gain $=-1.92 \mathrm{~V} / \mathrm{V}$
$R_{\text {out }}=9.17 \mathrm{k} \Omega$ including $g_{d s 1}$ and $g_{d s 2}$ and $10 \mathrm{k} \Omega$ ignoring $g_{d s 1}$ and $g_{d s 2}$
$z_{1}=2.10 \times 10^{9} \mathrm{rads} / \mathrm{sec}$
$p_{1}=-64.1 \times 10^{6} \mathrm{rads} / \mathrm{sec}$.
Thus, the -3 dB frequency is 10.2 MHz .

Voltage Transfer Characteristic of the Current Source Inverter

Regions of operation for the transistors:
M1: $\quad v_{D S 1} \geq v_{G S 1}-V_{T n} \rightarrow v_{\text {OUT }} \geq v_{I N}-0.7 \mathrm{~V}$
M2: $v_{S D 2} \geq v_{S G 2}-\left|V_{T_{p}}\right| \rightarrow V_{D D}-v_{O U T} \geq V_{D D}-V_{G G 2}-\left|V_{T p}\right| \quad \rightarrow \quad v_{O U T} \leq 3.2 \mathrm{~V}$

Large-Signal Voltage Swing Limits of the Current Source Load Inverter

Maximum output voltage, vOUT (max):

$$
v_{O U T}(\max) \cong V_{D D}
$$

Minimum output voltage, vOUT (min):
Assume that M1 is nonsaturated. The minimum output voltage is,

$$
v_{\text {OUT }}(\min)=\operatorname{voUT}_{\text {OUT }}(\min)=\left(V_{D D}-V_{T 1}\right)\left[1-\sqrt{1-\left(\frac{\beta_{2}}{\beta_{1}}\right)\left(\frac{V_{D D}-V_{G G}-\left|V_{T 2}\right| 2}{V_{D D}-V_{T 1}}\right)}\right]
$$

This result assumes that $v_{I N}$ is taken to $V_{D D}$.

Small-Signal Midband Performance of the Current Source Load Inverter

Small-Signal Model:

Midband Performance:

Frequency Response of the Current Source Load Inverter

Incorporation of the parasitic capacitors into the small-signal model (x is connected to $V_{G G 2}$):

If we assume the input voltage has a small source resistance, then we can write the following:

$$
\frac{V_{\text {out }}(s)}{V_{\mathrm{in}}(s)}=\frac{-g_{m} R_{\text {out }}\left(1-\frac{s}{z_{1}}\right)}{1-\frac{s}{p_{1}}}
$$

Fig. 5.1-4
where $\quad g_{m}=g_{m 1}, \quad p_{1}=\frac{-1}{R_{\text {out }}\left(C_{\text {out }}+C_{M}\right)}, \quad$ and $z_{1}=\frac{g_{m}}{C_{M}}$
and $R_{\text {out }}=\frac{1}{g_{d s 1}+g_{d s 2}} \quad$ and $C_{o u t}=C_{g d 2}+C_{b d 1}+C_{b d 2}+C_{L} C_{M}=C_{g d 1}$
Therefore, if $\left|p_{1}\right|<\left|z_{1}\right|$, then the -3 dB frequency response can be expressed as

$$
\omega_{-3 \mathrm{~dB}} \approx \omega_{1}=\frac{g_{d s 1}+g_{d s 2}}{C_{g d 1}+C_{g d 2}+C_{b d 1}+C_{b d 2}+C_{L}}
$$

Example 5.1-2 - Performance of a Current-Sink Inverter
A current-sink inverter is shown in Fig. 5.1-7. Assume that $W_{1}=2 \mu \mathrm{~m}, L_{1}=1 \mu \mathrm{~m}, W_{2}=1 \mu \mathrm{~m}, L_{2}=1 \mu \mathrm{~m}, V_{D D}=5$ volts, $V_{G G 1}=3$ volts, and the parameters of Table 3.1-2 describe M1 and M2. Use the capacitor values of Example 5.1-1 $\left(C_{g d 1}=C_{g d 2}\right)$. Calculate the output-swing limits and the small-signal performance.

Solution

Figure 5.1-7 Current sink CMOS inverter.

To attain the output signal-swing limitations, we treat Fig. 5.1-7 as a current source CMOS inverter with PMOS parameters for the NMOS and NMOS parameters for the PMOS and use NMOS equations. Using a prime notation to designate the results of the current source CMOS inverter that exchanges the PMOS and NMOS model parameters,

$$
v_{O U T}(\max)^{\prime}=5 \mathrm{~V} \text { and } v_{O U T}(\min)^{\prime}=(5-0.7)\left[1-\sqrt{1-\left(\frac{110 \cdot 1}{50 \cdot 2}\right)\left(\frac{3-0.7}{5-0-0.7}\right)^{2}}\right]=0.74 \mathrm{~V}
$$

In terms of the current sink CMOS inverter, these limits are subtracted from 5 V to get
$v_{\text {OUT }}(\max)=4.26 \mathrm{~V}$ and $v_{\text {OUT }}(\min)=0 \mathrm{~V}$.
To find the small signal performance, first calculate the dc current. The dc current, I_{D}, is

$$
\begin{aligned}
I_{D} & =\frac{K_{N} W_{1}}{2 L_{1}}\left(V_{G G 1}-V_{T N}\right)^{2}=\frac{110 \cdot 1}{2 \cdot 1}(3-0.7)^{2}=291 \mu \mathrm{~A} \\
v_{\text {out }} / v_{\text {in }} & =-9.2 \mathrm{~V} / \mathrm{V}, \quad R_{\text {out }}=38.1 \mathrm{k} \Omega, \quad \text { and } \quad f_{-3 \mathrm{~dB}}=2.78 \mathrm{MHz} .
\end{aligned}
$$

Voltage Transfer Characteristic of the Push-Pull Inverter

Regions of operation for M1 and M2:
M1: $v_{D S 1} \geq v_{G S 1}-V_{T 1} \rightarrow v_{O U T} \geq v_{I N}-0.7 \mathrm{~V}$
$\mathrm{M} 2: v_{S D 2} \geq v_{S G 2}-\left|V_{T 2}\right| \rightarrow V_{D D}{ }^{-} v_{O U T} \geq V_{D D}-v_{I N}-\left|V_{T 2}\right| \rightarrow v_{\text {OUT }} \leq v_{I N}+0.7 \mathrm{~V}$

Small-Signal Performance of the Push-Pull Amplifier

\square

Fig. 5.1-9
Small-signal analysis gives the following results:

$$
\begin{aligned}
& \frac{v_{\mathrm{out}}}{v_{\mathrm{in}}}=\frac{-\left(g_{m 1}+g_{m 2}\right)}{g_{d s 1}+g_{d s 2}}=-\sqrt{\left(2 / I_{D}\right)}\left[\frac{\sqrt{K_{N}^{\prime}\left(W_{1} / L_{1}\right)}+\sqrt{K_{P}^{\prime}\left(W_{2} / L_{2}\right)}}{\lambda_{1}+\lambda_{2}}\right] \\
& R_{\text {out }}=\frac{1}{g_{d s 1}+g_{d s 2}} \\
& z=\frac{g_{m 1}+g_{m 2}}{C_{M}}=\frac{g_{m 1}+g_{m 2}}{C_{g d 1}+C_{g d 2}}
\end{aligned}
$$

and

$$
p_{1}=\frac{-\left(g_{d s 1}+g_{d s 2}\right)}{C_{g d 1}+C_{g d 2}+C_{b d 1}+C_{b d 2}+C_{L}}
$$

If $z_{1}>\left|p_{1}\right|$, then

$$
\omega_{-3 \mathrm{~dB}}=\frac{g_{d s 1}+g_{d s 2}}{C_{g d 1}+C_{g d 2}+C_{b d 1}+C_{b d 2}+C_{L}}
$$

Example 5.1-3 - Performance of a Push-Pull Inverter

The performance of a push-pull CMOS inverter is to be examined. Assume that $W_{1}=$ $1 \mu \mathrm{~m}, L_{1}=1 \mu \mathrm{~m}, W_{2}=2 \mu \mathrm{~m}, L_{2}=1 \mu \mathrm{~m}, V_{D D}=5$ volts, and use the parameters of Table 3.1-2 to model M1 and M2. Use the capacitor values of Example 5.1-1 $\left(C_{g d 1}=C_{g d 2}\right)$. Calculate the output-swing limits and the small-signal performance assuming that $I_{D 1}=$ $I_{D 2}=300 \mu \mathrm{~A}$.

Solution

The output swing is seen to be from 0 V to 5 V . In order to find the small signal performance, we will make the important assumption that both transistors are operating in the saturation region. Therefore:

$$
\begin{aligned}
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-257 \mu \mathrm{~S}-245 \mu \mathrm{~S}}{12 \mu \mathrm{~S}+15 \mu \mathrm{~S}}=-18.6 \mathrm{~V} / \mathrm{V} \\
& R_{\text {out }}=37 \mathrm{k} \Omega \\
& f_{-3 \mathrm{~dB}}=2.86 \mathrm{MHz}
\end{aligned}
$$

and

$$
z_{1}=399 \mathrm{MHz}
$$

Noise Analysis of Inverting Amplifiers

Noise model:

Approach:
1.) Assume a mean-square input-voltage-noise spectral density $e_{n}{ }^{2}$ in series with the gate of each MOSFET.
(This step assumes that the MOSFET is the common source configuration.)
2.) Calculate the output-voltage-noise spectral density, $e_{\text {out }}{ }^{2}$ (Assume all sources are additive).
3.) Refer the output-voltage-noise spectral density back to the input to get equivalent input noise $e_{e q}{ }^{2}$.
4.) Substitute the type of noise source, $1 / \mathrm{f}$ or thermal.

Noise Analysis of the Active Load Inverter

1.) See model to the right.
2.) $e_{\text {out }}{ }^{2}=e_{n 1^{2}}\left(\frac{g_{m 1}}{g_{m 2}}\right)^{2}+e_{n 2}{ }^{2}$
3.) $e_{e q}{ }^{2}=e_{n 1^{2}}\left[1+\left(\frac{g_{m 2}}{g_{m 1}}\right)\left(\frac{e_{n 2}}{e_{n 1}}\right)\right]$

Up to now, the type of noise is not defined.

1/f Noise

Substituting $e_{n}{ }^{2}=\frac{\mathrm{KF}}{2 f C_{o x} W L K^{\prime}}=\frac{B}{f W L}$, into the above gives,

$$
e_{e q(1 / f)}=\left(\frac{B_{1}}{f W_{1} L_{1}}\right)^{1 / 2}\left[1+\left(\frac{K_{2}^{\prime} B_{2}}{K_{1}^{\prime} B_{1}}\right)\left(\frac{L_{1}}{L_{2}}\right)^{2}\right]^{1 / 2}
$$

To minimize $1 / \mathrm{f}$ noise, 1.) Make $L_{2} \gg L_{1}, 2$.) increase the value of W_{1} and 3.) choose M1 as a PMOS.
Thermal Noise
Substituting $e_{n}{ }^{2}=\frac{8 k T}{3 g_{m}}$ into the above gives,

$$
e_{e q(\mathrm{th})}=\left\{\left(\frac{8 k T\left(1+\eta_{1}\right)}{3\left[2 K_{1}^{\prime}(W / L)_{1} I_{1}\right]^{1 / 2}}\right)\left[1+\left(\frac{W_{2} L_{1} K_{2}^{\prime}}{L_{2} W_{1} K_{1}^{\prime}}\right)^{1 / 2}\right]\right\}^{1 / 2}
$$

To minimize thermal noise, maximize the gain of the inverter.

Noise Analysis of the Active Load Inverter - Continued

When calculating the contribution of $e_{n 2}{ }^{2}$ to $e_{o u t}{ }^{2}$, it was assumed that the gain was unity. To verify this assumption consider the following model:

Fig. 5.1-11
We can show that,

$$
\frac{e_{o u t}{ }^{2}}{e_{n 2^{2}}}=\left[\frac{g_{m 2}\left(r_{d s 1} \| r_{d s 2}\right)}{1+g_{m 2}\left(r_{d s 1} \| r_{d s 2}\right)}\right]^{2} \approx 1
$$

Noise Analysis of the Current Source Load Inverting Amplifier

Model:

The output-voltage-noise spectral density of this inverter can be written as,

$$
e_{\text {out }}^{2}=\left(g_{m 1} r_{\text {out }}\right)^{2} e_{n} 1^{2}+\left(g_{m 2} r_{\text {out }}\right)^{2} e_{n} 2^{2}
$$

or

$$
e_{e q}^{2}=e_{n 1^{2}}+\frac{\left(g_{m 2} r_{\text {out }}\right)^{2}}{\left(g_{m 1} r_{\text {out }}\right)^{2}} e_{n 2^{2}}^{2}=e_{n 1^{2}}\left[1+\left(\frac{\left(g_{m 2}\right)}{g_{m 1}}\right)^{2} \frac{\bar{e}_{n 2}^{2}}{e_{n 1^{2}}}\right]
$$

This result is identical with the active load inverter.
Thus the noise performance of the two circuits are equivalent although the small-signal voltage gain is significantly different.

Noise Analysis of the Push-Pull Amplifier
Model:

The equivalent input-voltage-noise spectral density of the push-pull inverter can be found as

$$
e_{e q}=\sqrt{\left(\frac{g_{m 1} e_{n 1}}{g_{m 1}+g_{m 2}}\right)^{2}+\left(\frac{g_{m 2} e_{n 2}}{g_{m 1}+g_{m 2}}\right)^{2}}
$$

If the two transconductances are balanced $\left(g_{m 1}=g_{m 2}\right)$, then the noise contribution of each device is divided by two.
The total noise contribution can only be reduced by reducing the noise contribution of each device.
(Basically, both M1 and M2 act like the "load" transistor and "input" transistor, so there is no defined input transistor that can cause the noise of the load transistor to be insignificant.)

Summary of CMOS Inverting Amplifiers

Inverter	AC Voltage Gain	AC Output Resistance	Bandwidth (CGB=0)	Equivalent, input-referred,meansquare noise voltage
p-channel active load inverter	$\frac{-\mathrm{gm} 1}{\mathrm{gm} 2}$	$\frac{1}{\mathrm{gm} 2}$	$\frac{\mathrm{gm} 2}{\text { CBD1 }+\mathrm{CGS1} 1+\mathrm{CGS} 2+\mathrm{CBD} 2}$	$e_{\mathrm{n} 1}{ }^{2}+e_{\mathrm{n} 2} 2^{2}\left(\frac{\mathrm{~g}_{\mathrm{m} 2}}{\mathrm{~g}_{\mathrm{m} 1}} 2\right.$
n-channel active load inverter	$\frac{-\mathrm{gm} 1}{\mathrm{gm} 2+\mathrm{gmb} 2}$	$\frac{1}{\mathrm{gm} 2+\mathrm{gmb} 2}$	$\frac{\mathrm{gm}_{2}+\mathrm{g}_{\mathrm{mb}} 2}{\mathrm{C}_{\mathrm{BD}} 1+\mathrm{C}_{\mathrm{GD}} 1+\mathrm{C}_{\mathrm{GS}} 2+\mathrm{C}_{\mathrm{BS}} 2}$	$e_{\mathrm{n} 1^{2}}+e_{\mathrm{n} 2^{2}}\left(\frac{\mathrm{~g}_{\mathrm{m} 2}}{\mathrm{~g}_{\mathrm{m} 1}}\right) 2$
Current source load inverter	$\frac{-\mathrm{gm} 1}{\mathrm{gds} 1+\mathrm{gds} 2}$	$\frac{1}{\mathrm{gds} 1+\mathrm{gds} 2}$	$\frac{\mathrm{gds} 1+\mathrm{gds} 2}{\text { CBD1 }+ \text { CGD1 } 1 \text { CDG2 }+ \text { CBD2 }}$	$e_{\mathrm{n} 1}{ }^{2}+e_{\mathrm{n} 2} 2^{2}\left(\frac{\mathrm{~g}_{\mathrm{m} 2}}{\mathrm{~g}_{\mathrm{m} 1}}\right) 2$
n-channel depletion load inverter	$\sim \frac{-\mathrm{gm} 1}{\mathrm{gmb} 2}$	$\frac{1}{\mathrm{gmb} 2+\mathrm{gds} 1+\mathrm{gds} 2}$	$\frac{\mathrm{gmb}^{2}+\mathrm{gds} 1+\mathrm{gds} 2}{\mathrm{CBD} 1+\mathrm{CGD} 1+\mathrm{CGS} 2+\mathrm{CBD} 2}$	${\overline{e_{\mathrm{n} 1}}}^{2}+\overline{e_{\mathrm{n} 2}} 2\left(\frac{\mathrm{~g}_{\mathrm{m} 2}}{\mathrm{~g}_{\mathrm{m} 1}}\right)^{2}$
Push-Pull inverter	$\frac{-(\mathrm{gm} 1+\mathrm{gm} 2)}{\mathrm{gds} 1+\mathrm{gds} 2}$	$\frac{1}{\mathrm{gds} 1+\mathrm{gds} 2}$	$\frac{\text { gds1 }+ \text { gds } 2}{\mathrm{C}_{\mathrm{BD} 1}+\mathrm{CGD} 1+\mathrm{CGS} 2+\mathrm{CBD}^{2}}$	$\left(\frac{\mathrm{g}_{\mathrm{m} 1} e_{\mathrm{n} 1}}{\mathrm{~g}_{\mathrm{m} 1}+\mathrm{g}_{\mathrm{m} 2}}\right)^{2}+\left(\frac{\mathrm{g}_{\mathrm{m} 1} e_{\mathrm{n} 1}}{\mathrm{~g}_{\mathrm{m} 1}+\mathrm{g}_{\mathrm{m} 2}}\right)^{2}$

Inverting configurations we did not examine.

SECTION 5.2 - DIFFERENTIAL AMPLIFIERS

What is a Differential Amplifier?

A differential amplifier is an amplifier that amplifies the difference between two voltages and rejects the average or common mode value of the two voltages.
Differential and common mode voltages:
v_{1} and v_{2} are called single-ended voltages. They are
 voltages referenced to ac ground.
The differential-mode input voltage, $v_{I D}$, is the voltage difference between v_{1} and v_{2}. The common-mode input voltage, $v_{I C}$, is the average value of v_{1} and v_{2}.
$\therefore \quad v_{I D}=v_{1}-v_{2} \quad$ and $\quad v_{I C}=\frac{v_{1}+v_{2}}{2} \Rightarrow v_{1}=v_{I C}+0.5 v_{I D} \quad$ and $v_{2}=v_{I C}-0.5 v_{I D}$

$v_{O U T}=A_{V D} v_{I D} \pm A_{V C} v_{I C}=A_{V D}\left(v_{1}-v_{2}\right) \pm A_{V C}\left(\frac{v_{1}+v_{2}}{2}\right)$ where
$A_{V D}=$ differential-mode voltage gain
$A_{V C}=$ common-mode voltage gain
Fig. 5.2-1B

Differential Amplifier Definitions

- Common mode rejection rato (CMRR)
$C M R R=\left|\frac{A_{V D}}{A_{V C}}\right|$
$C M R R$ is a measure of how well the differential amplifier rejects the common-mode input voltage in favor of the differential-input voltage.
- Input common-mode range (ICMR)

The input common-mode range is the range of common-mode voltages over which the differential amplifier continues to sense and amplify the difference signal with the same gain.

Typically, the ICMR is defined by the common-mode voltage range over which all MOSFETs remain in the saturation region.

- Output offset voltage ($V_{O S}$ (out))

The output offset voltage is the voltage which appears at the output of the differential amplifier when the input terminals are connected together.

- Input offset voltage $\left(V_{O S}(\mathrm{in})=V_{O S}\right)$

The input offset voltage is equal to the output offset voltage divided by the differential voltage gain.

$$
V_{O S}=\frac{V_{O S}(\text { out })}{A_{V D}}
$$

Transconductance Characteristic of the Differential Amplifier

Consider the following n-channel differential amplifier (sometimes called a source-coupled pair):

Where should bulk be connected? Consider a p-well, CMOS technology,

Fig. 5.2-3
1.) Bulks connected to the sources: No modulation of V_{T} but large common mode parasitic capacitance.
2.) Bulks connected to ground: Smaller common mode parasitic capacitors, but modulation of V_{T}.
If the technology is n-well CMOS, there is no choice. The bulks must be connected to ground.

Transconductance Characteristic of the Differential Amplifier - Continued

Defining equations:

$$
v_{I D}=v_{G S 1}-v_{G S 2}=\left(\frac{2 i_{D 1}}{\beta}\right)^{1 / 2}-\left(\frac{2 i_{D 2}}{\beta}\right)^{1 / 2} \quad \text { and } \quad I_{S S}=i_{D 1}+i_{D 2}
$$

Solution:

$$
i_{D 1}=\frac{I_{S S}}{2}+\frac{I_{S S}}{2}\left(\frac{\beta v_{I D}^{2}}{I_{S S}}-\frac{\beta v_{I D}^{4}}{4 I_{S S}^{2}}\right) 1 / 2 \quad \text { and } \quad i_{D 2}=\frac{I_{S S}}{2}-\frac{I_{S S}}{2}\left(\frac{\beta v_{I D}^{2}}{I_{S S}}-\frac{\beta v_{I D}^{4}}{4 I_{S S}^{2}}\right)^{1 / 2}
$$

which are valid for $v_{I D}<2\left(I_{S S} / \beta\right)^{1 / 2}$.
Illustration of the result:

Differentiating $i_{D 1}$ (or $i_{D 2}$) with respect to $v_{I D}$ and

Fig. 5.2-4 setting $V_{I D}=0 \mathrm{~V}$ gives

$$
g_{m}=\frac{d i_{D 1}}{d v_{I D}}\left(V_{I D}=0\right)=\left(\beta I_{S S} / 4\right)^{1 / 2}=\left(\frac{K_{1}^{\prime} I_{S S} W_{1}}{4 L_{1}}\right)^{1 / 2} \quad \text { (half the } g_{m} \text { of an inverting amplifier) }
$$

Voltage Transfer Characteristic of the Differential Amplifier

In order to obtain the voltage transfer characteristic, a load for the differential amplifier must be defined. We will select a current mirror load as illustrated below.

Note that output signal to ground is equivalent to the differential output signal due to the current mirror.
The short-circuit, transconductance is given as

$$
g_{m}=\frac{d i_{O U T}}{d v_{I D}}\left(V_{I D}=0\right)=\left(\beta I_{S S}\right)^{1 / 2}=\left(\frac{K_{1}^{\prime} I_{S S} W_{1}}{L_{1}}\right)^{1 / 2}
$$

Voltage Transfer Function of the Differential Amplifer with a Current Mirror Load

Regions of operation of the transistors:
M2 is saturated when,

$$
v_{D S 2} \geq v_{G S 2}-V_{T N} \rightarrow v_{O U T}-V_{S 1} \geq V_{I C}-0.5 v_{I D^{-}}-V_{S 1}-V_{T N} \rightarrow v_{\text {OUT }} \geq V_{I C}-V_{T N}
$$

where we have assumed that the region of transition for M2 is close to $v_{I D}=0 \mathrm{~V}$.
M4 is saturated when,

$$
v_{S D 4} \geq v_{S G 4}-\left|V_{T P}\right| \rightarrow V_{D D}-v_{O U T} \geq V_{S G 4}-\left|V_{T P}\right| \rightarrow v_{O U T} \leq V_{D D}-V_{S G 4}+\left|V_{T P}\right|
$$

The regions of operations shown on the voltage transfer function assume $I_{S S}=100 \mu \mathrm{~A}$.
Note: $V_{S G 4}=\sqrt{\frac{2 \cdot 50}{50 \cdot 2}}+\left|V_{T P}\right|=1+\left|V_{T P}\right| \Rightarrow \quad v_{O U T} \leq 5-1-0.7+0.7=4 \mathrm{~V}$

Differential Amplifier Using p-channel Input MOSFETs

Fig. 5.2-7

Input Common Mode Range (ICMR)

$I C M R$ is found by setting $v_{I D}=0$ and varying $v_{I C}$ until one of the transistors leaves the saturation.
Highest Common Mode Voltage
Path from G1 through M1 and M3 to $V_{D D}$:

$$
\begin{aligned}
& V_{I C}(\max)=V_{G 1}(\max)=V_{G 2}(\max) \\
& \quad=V_{D D}-V_{S G 3}-V_{D S 1}(\mathrm{sat})+V_{G S 1}
\end{aligned}
$$

or

$$
V_{I C}(\max)=V_{D D}-V_{S G 3}+V_{T N 1}
$$

Path from G2 through M2 and M4 to $V_{D D}$:

$$
\begin{gathered}
V_{I C}(\max)^{\prime}=V_{D D}-V_{S D 4}(\mathrm{sat})-V_{D S 2}(\mathrm{sat})+V_{G S 2} \\
=V_{D D}-V_{S D 4}(\mathrm{sat})+V_{T N 2} \\
\therefore \quad V_{I C}(\max)=V_{D D}-V_{S G 3}+V_{T N 1}
\end{gathered}
$$

Lowest Common Mode Voltage (Assume a $V_{S S}$ for generality)

$$
V_{I C}(\min)=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{G S 1}=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{G S 2}
$$

where we have assumed that $V_{G S 1}=V_{G S 2}$ during changes in the input common mode voltage.

Example 5.2-1 - Small-Signal Analysis of the Differential-Mode of the Diff. Amp
A requirement for differential-mode operation is that the differential amplifier is balanced ${ }^{\dagger}$.

Differential Transconductance:

Assume that the output of the differential amplifier is an ac short.

$$
i_{\text {out }},=\frac{g_{m 1} g_{m 3} r_{p 1}}{1+g_{m 3} r_{p 1}} v_{g s 1}-g_{m 2} v_{g s 2} \approx g_{m 1} v_{g s 1}-g_{m 2} v_{g s 2}=g_{m d} v_{i d}
$$

where $g_{m 1}=g_{m 2}=g_{m d}, r_{p 1}=r_{d s 1} \| r_{d s 3}$ and i^{\prime} out designates the output current into a short circuit.

[^0]
Small-Signal Analysis of the Differential-Mode of the Diff. Amplifier - Continued

Output Resistance:
Differential Voltage Gain:

$$
r_{\mathrm{out}}=\frac{1}{g_{d s 2}+g_{d s 4}}=r_{d s 2} \| r_{d s 4} \quad A_{v}=\frac{v_{\mathrm{out}}}{v_{i d}}=\frac{g_{m d}}{g_{d s 2}+g_{d s 4}}
$$

If we assume that all transistors are in saturation and replace the small signal parameters of g_{m} and $r_{d s}$ in terms of their large-signal model equivalents, we achieve

$$
A_{v}=\frac{v_{\text {out }}}{v_{i d}}=\frac{\left(K_{1}^{\prime} I_{S S} W_{1} / L_{1}\right)^{1 / 2}}{\left(\lambda_{2}+\lambda_{4}\right)\left(I_{S S} / 2\right)}=\frac{2}{\lambda_{2}+\lambda_{4}}\left(\frac{K_{1}^{\prime} W_{1}}{I_{S S} L_{1}}\right)^{1 / 2} \propto \frac{1}{\sqrt{I_{S S}}}
$$

Note that the small-signal gain is inversely proportional to the square root of the bias current!
Example:
If $W_{1} / L_{1}=2 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and $I_{S S}=50 \mu \mathrm{~A}$ $(10 \mu \mathrm{~A})$, then

$A_{\nu}($ n-channel $)=46.6 \mathrm{~V} / \mathrm{V}(104.23 \mathrm{~V} / \mathrm{V})$
$A_{\nu}($ p-channel $)=31.4 \mathrm{~V} / \mathrm{V}(70.27 \mathrm{~V} / \mathrm{V})$
$r_{\text {out }}=\frac{1}{g_{d s 2}+g_{d s 4}}=\frac{1}{25 \mu \mathrm{~A} \cdot 0.09 \mathrm{~V}-1}=0.444 \mathrm{M} \Omega(2.22 \mathrm{M} \Omega)$

Common Mode Analysis for the Current Mirror Load Differential Amplifier
The current mirror load differential amplifier is not a good example for common mode analysis because the current mirror rejects the common mode signal.

Therefore:

- The common mode output voltage should ideally be zero.
- Any voltage that exists at the output is due to mismatches in the gain between the two different paths.

Small-Signal Analysis of the Common-Mode of the Differential Amplifier

The common-mode gain of the differential amplifier with a current mirror load is ideally zero.
To illustrate the common-mode gain, we need a different type of load so we will consider the following:

Differential-Mode Analysis:

$$
\frac{v_{o 1}}{v_{i d}} \approx-\frac{g_{m 1}}{2 g_{m 3}} \quad \text { and } \quad \frac{v_{o 2}}{v_{i d}} \approx+\frac{g_{m 2}}{2 g_{m 4}}
$$

Note that these voltage gains are half of the active load inverter voltage gain.

Small-Signal Analysis of the Common-Mode of the Differential Amplifier - Cont'd

Common-Mode Analysis:
Assume that $r_{d s 1}$ is large and can be ignored (greatly simplifies the analysis).

$$
\therefore \quad v_{g s 1}=v_{g 1}-v_{s 1}=v_{i c}-2 g_{m 1} r_{d s 5} v_{g s 1}
$$

Solving for $v_{g s 1}$ gives

$$
v_{g s 1}=\frac{v_{i c}}{1+2 g_{m 1} r_{d s 5}}
$$

The single-ended output voltage, $v_{o 1}$, as a function of $v_{i c}$ can be written as

$$
\frac{v_{o 1}}{v_{i c}}=-\frac{g_{m 1}\left[r_{d s 3} \|\left(1 / g_{m 3}\right)\right]}{1+2 g_{m 1} r_{d s 5}} \approx-\frac{\left(g_{m 1} / g_{m 3}\right)}{1+2 g_{m 1} r_{d s 5}} \approx-\frac{g_{d s 5}}{2 g_{m 3}}
$$

Common-Mode Rejection Ratio (CMRR):

$$
C M R R=\frac{\left|v_{o 1} / v_{i d}\right|}{\left|v_{o 1}\right| v_{i c} \mid}=\frac{g_{m 1} / 2 g_{m 3}}{g_{d s 5} / 2 g_{m 3}}=g_{m 1} r_{d s 5}
$$

How could you easily increase the CMRR of this differential amplifier?

Frequency Response of the Differential Amplifier

Back to the current mirror load differential amplifier:

Ignore the zeros that occur due to $C_{g d 1}, C_{g d 2}$ and $C_{g d 4}$.
$C_{1}=C_{g d 1}+C_{b d 1}+C_{b d 3}+C_{g s 3}+C_{g s 4}, C_{2}=C_{b d 2}+C_{b d 4}+C_{g d 2}+C_{L}$ and $C_{3}=C_{g d 4}$ If $C_{3} \approx 0$, then we can write

$$
V_{\text {out }}(s) \approx \frac{g_{m 1}}{g_{d s 2}+g_{d s 4}}\left[\left(\frac{g_{m 3}}{g_{m 3}+s C_{1}}\right) V_{g s 1}(s)-V_{g s 2}(s)\right]\left(\frac{\omega_{2}}{s+\omega_{2}}\right) \text { where } \omega_{2} \approx \frac{g_{g s 2}+g_{d s 4}}{C_{2}}
$$

If we further assume that $g_{m 3} / C_{1} \gg\left(g_{d s 2}+g_{d s 4}\right) / C_{2}=\omega_{2}$ then the frequency response of the differential amplifier reduces to

$$
\frac{V_{\text {out }}(s)}{V_{i d}(s)} \cong\left(\frac{g_{m 1}}{g_{d s 2}+g_{d s 4}}\right)\left(\frac{\omega_{2}}{s+\omega_{2}}\right)
$$

(A more detailed analysis will be made in Chapter 6)

An Intuitive Method of Small Signal Analysis

Small signal analysis is used so often in analog circuit design that it becomes desirable to find faster ways of performing this important analysis.
Intuitive Analysis (or Schematic Analysis)
Technique:
1.) Identify the transistor(s) that convert the input voltage to current (these transistors are called transconductance transistors).
2.) Trace the currents to where they flow into an equivalent resistance to ground.
3.) Multiply this resistance by the current to get the voltage at this node to ground.
4.) Repeat this process until the output is reached.

Simple Example:

$$
v_{o 1}=-\left(g_{m 1} v_{\text {in }}\right) R_{1} \rightarrow v_{\text {out }}=-\left(g_{m 2} v_{o 1}\right) R_{2} \quad \rightarrow \quad v_{\text {out }}=\left(g_{m 1} R_{1} g_{m 2} R_{2}\right) v_{\text {in }}
$$

Intuitive Analysis of the Current-Mirror Load Differential Amplifier

1.) $i_{1}=0.5 g_{m 1} v_{i d} \quad$ and $i_{2}=-0.5 g_{m 2} v_{i d}$
2.) $i_{3}=i_{1}=0.5 g_{m 1} v_{i d}$
3.) $i_{4}=i_{3}=0.5 g_{m 1} v_{i d}$
4.) The resistance at the output node, $r_{o u t}$, is $r_{d s 2} \| r_{d s 4}$ or $\frac{1}{g_{d s 2}+g_{d s 4}}$
5.) $\therefore v_{\text {out }}=\left(0.5 g_{m 1} v_{\text {id }}+0.5 g_{m 2} v_{\text {id }}\right) r_{\text {out }}=\frac{g_{m 1} v_{\text {in }}}{g_{d s 2}+g_{d s 4}}=\frac{g_{m 2} v_{\text {in }}}{g_{d s 2}+g_{d s 4}} \Rightarrow \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m 1}}{g_{d s 2}+g_{d s 4}}$

Some Concepts to Help Extend the Intuitive Method of Small-Signal Analysis

1.) Approximate the output resistance of any cascode circuit as

$$
R_{\text {out }} \approx\left(g_{m 2} r_{d s 2}\right) r_{d s 1}
$$

where M1 is a transistor cascoded by M2.
2.) If there is a resistance, R, in series with the source of the transconductance transistor, let the effective transconductance be

$$
g_{m(e f f)}=\frac{g_{m}}{1+g_{m} R}
$$

Proof:

$\therefore v_{s s 2}=v_{g 2}-v_{s 2}=v_{i n}-\left(g_{m 2} r_{d s 1}\right) v_{g s 2} \Rightarrow v_{g s 2}=\frac{v_{i n}}{1+g_{m 2} r_{d s 1}}$
Thus, $i_{\text {out }}=\frac{g_{m 2} v_{\text {in }}}{1+g_{m 2} \mathrm{r}_{\text {ds } 1}}=g_{m 2}$ (eff) $v_{\text {in }}$

Slew Rate of the Differential Amplifier

Slew Rate $(S R)=$ Maximum output-voltage rate (either positive or negative)
It is caused by, $i_{O U T}=C_{L} \frac{d v_{O U T}}{d t}$. When $i_{O U T}$ is a constant, the rate is a constant.
Consider the following current-mirror load, differential amplifiers:

Fig. 5.2-11B
Note that slew rate can only occur when the differential input signal is large enough to cause $I_{S S}\left(I_{D D}\right)$ to flow through only one of the differential input transistors.

$$
S R=\frac{I_{S S}}{C_{L}}=\frac{I_{D D}}{C_{L}} \Rightarrow \text { If } C_{L}=5 \mathrm{pF} \text { and } I_{S S}=10 \mu \mathrm{~A} \text {, the slew rate is } S R=2 \mathrm{~V} / \mu \mathrm{s} .
$$

(For the BJT differential amplifier slewing occurs at $\pm 100 \mathrm{mV}$ whereas for the MOSFET differential amplifier it can be $\pm 2 \mathrm{~V}$ or more.)

Noise Analysis of the Differential Amplifier

Solve for the total output-noise current to get,

$$
i_{t o},{ }^{2}=g_{m 1^{2}} e_{n 1}^{2}+g_{m 2^{2}} e_{n 2}+g_{m 3^{2}} e_{n 3}{ }^{2}+g_{m 4}^{2} e_{n 4}
$$

This output-noise current can be expressed in terms of an equivalent input noise voltage, $e_{\text {eq }}{ }^{2}$, given as

$$
i_{t o}{ }^{2}=g_{m 1^{2}} e_{e q}{ }^{2}
$$

Equating the above two expressions for the total output-noise current gives,

$$
e_{e q}{ }^{2}=e_{n 1^{2}}+e_{n 2^{2}}+\left(\frac{g_{m 3}}{g_{m 1}}\right)^{2}\left[e_{n 3}{ }^{2}+e_{n 4^{2}}\right]
$$

1/f Noise ($e_{n 1}{ }^{2}=e_{n 2}{ }^{2}$ and $e_{n 3}{ }^{2}=e_{n 4^{2}}$): \quad Thermal Noise $\left(e_{n 1}{ }^{2}=e_{n 2}{ }^{2}\right.$ and $e_{n 3}{ }^{2}=e_{n 4^{2}}$):
$e_{\mathrm{eq}(1 / f)}=\sqrt{\frac{2 B_{P}}{f W_{1} L_{1}}} \sqrt{1+\left(\frac{K_{N}^{\prime} B_{N}}{K_{P}^{\prime} B_{P}}\right)\left(\frac{L_{1}}{L_{3}}\right)^{2}} \quad e_{\mathrm{eq}(t h)}=\sqrt{\left(\frac{16 k T}{3\left[2 K_{1}^{\prime}(W / L)_{1} I_{1}\right]^{1 / 2}}\right)\left[1+\left(\frac{W_{3} L_{1} K_{3}^{\prime}}{L_{3} W_{1} K_{1}^{\prime}}\right)^{1 / 2}\right]}$

Current-Source Load Differential Amplifier

Gives a truly balanced differential amplifier.

Also, the upper input common-mode range is extended.
However, a problem occurs if $I_{1} \neq I_{3}$ or if $I_{2} \neq I_{4}$.

A Differential-Output, Differential-Input Amplifier

Probably the best way to solve the current mismatch problem is through the use of common-mode feedback.
Consider the following solution to the previous problem.

Operation:

- Common mode output voltages are sensed at the gates of MC2A and MC2B and compared to $V_{C M}$.
- The current in MC3 provides the negative feedback to drive the common mode output voltage to the desired level.
- With large values of output voltage, this common mode feedback scheme has flaws.

Common-Mode Stabilization of the Diff.-Output, Diff.-Input Amplifier - Continued

The following circuit avoids the large differential output signal swing problems.

Note that $R_{C M 1}$ and $R_{C M 2}$ must not load the output of the differential amplifier.

Design of a CMOS Differential Amplifier with a Current Mirror Load

Design Considerations:

Constraints
Power supply
Technology
Temperature

Specifications
Small-signal gain
Frequency response (C_{L})
ICMR
Slew rate (C_{L})
Power dissipation
Relationships
$A_{\nu}=g_{m 1} R_{\text {out }}$
$\omega_{-3 \mathrm{~dB}}=1 / R_{\text {out }} C_{L}$
$V_{I C}(\max)=V_{D D}-V_{S G 3}+V_{T N 1}$
$V_{I C}(\mathrm{~min})=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{G S 1}=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{G S 2}$
$S R=I_{S S} / C_{L}$
$P_{\text {diss }}=\left(V_{D D^{+}}\left|V_{S S}\right|\right) \mathrm{xAll}$ dc currents flowing from $V_{D D}$ or to $V_{S S}$
biss

Design of a CMOS Differential Amplifier with a Current Mirror Load - Continued

Example 5.2-2 - Design of a MOS Differential Amp. with a Current Mirror Load
Design the currents and W / L values of the current mirror load MOS differential amplifier to satisfy the following specifications: $V_{D D}=-V_{S S}=2.5 \mathrm{~V}, S R \geq 10 \mathrm{~V} / \mu \mathrm{s}\left(C_{L}=5 \mathrm{pF}\right), f_{-3 \mathrm{~dB}}$ $\geq 100 \mathrm{kHz}\left(C_{L}=5 \mathrm{pF}\right)$, a small signal gain of $100 \mathrm{~V} / \mathrm{V},-1.5 \mathrm{~V} \leq I C M R \leq 2 \mathrm{~V}$ and $P_{\text {diss }} \leq 1 \mathrm{~mW}$. Use the parameters of $K_{N}{ }^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \quad K_{P}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \quad V_{T N}=0.7 \mathrm{~V}, \quad V_{T P}=-0.7 \mathrm{~V}$, $\lambda_{N}=0.04 \mathrm{~V}^{-1}$ and $\lambda_{P}=0.05 \mathrm{~V}^{-1}$.

Solution

1.) To meet the slew rate, $I_{S S} \geq 50 \mu \mathrm{~A}$. For maximum $P_{\text {diss }}, I_{S S} \leq 200 \mu \mathrm{~A}$.
2.) $f_{-3 \mathrm{~dB}}$ of 100 kHz implies that $R_{\text {out }} \leq 318 \mathrm{k} \Omega$. Therefore $R_{\text {out }}=\frac{2}{\left(\lambda_{N}+\lambda_{P}\right) I_{S S}} \leq 318 \mathrm{k} \Omega$
$\therefore I_{S S} \geq 70 \mu \mathrm{~A} \quad$ Thus, pick $I_{S S}=100 \mu \mathrm{~A}$
3.) $V_{I C}(\max)=V_{D D}-V_{S G 3}+V_{T N 1} \rightarrow 2 \mathrm{~V}=2.5-V_{S G 3}+0.7$

$$
\begin{aligned}
& V_{S G 3}=1.2 \mathrm{~V}=\sqrt{\frac{2 \cdot 50 \mu \mathrm{~A}}{50 \mu \mathrm{~A} / \mathrm{V}^{2}\left(W_{3} / L_{3}\right)}}+0.7 \\
& \therefore \frac{W_{3}}{L_{3}}=\frac{W_{4}}{L_{4}}=\frac{2}{(0.5)^{2}}=8
\end{aligned}
$$

4.) $100=g_{m 1} R_{\text {out }}=\frac{g_{m 1}}{g_{d s 2}+g_{d s 4}}=\frac{\sqrt{2 \cdot 110 \mu \mathrm{~A} / \mathrm{V}^{2}\left(W_{1} / L_{1}\right)}}{(0.04+0.05) \sqrt{50 \mu \mathrm{~A}}}=23.31 \sqrt{\frac{W_{1}}{L_{1}}} \rightarrow \frac{W_{1}}{L_{1}}=\frac{W_{2}}{L_{2}}=18.4$

Example 5.2-2 - Continued

5.) $V_{I C}(\mathrm{~min})=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{G S 1} \rightarrow-1.5=-2.5+V_{D S 5}(\mathrm{sat})+\sqrt{\frac{2 \cdot 50 \mu \mathrm{~A}}{110 \mu \mathrm{~A} / \mathrm{V}^{2}(18.4)}}+0.7$

$$
V_{D S 5}(\mathrm{sat})=0.3-0.222=0.0777!!\Rightarrow \frac{W_{5}}{L_{5}}=\sqrt{\frac{2 I_{S S}}{K_{N} V_{D S 5}(\mathrm{sat})^{2}}}=300
$$

We probably should increase W_{1} / L_{1} to reduce $V_{G S 1}$ and allow a smaller W_{5} / L_{5}. If we choose $W_{1} / L_{1}=40$, then $W_{5} / L_{5}=9$. (Larger than specified gain should be okay.)

SECTION 5.3-CASCODE AMPLIFIER

Why Use the Cascode Amplifier?

- Can provide higher output resistance and larger gain if the load is also high resistance.
- It reduces the Miller effect when the driving source has a large source resistance.

The Miller effect causes $C_{g d 1}$ to be increased by the value of $1+\left(v_{1} / v_{i n}\right)$ and appear in parallel with the gate-source of M1 causing a dominant pole to occur.
The cascode amplifier eliminates this dominant pole by keeping the value of $v_{1} / v_{\text {in }}$ small by making the value of R_{2} to be approximately $2 / g_{m 2}$.

Large-Signal Characteristics of the Cascode Amplifier

M1 sat. when $V_{G G 2}-V_{G S 2} \geq V_{G S 1}-V_{T} \rightarrow v_{I N} \leq 0.5\left(V_{G G 2}+V_{T N}\right)$ where $V_{G S 1}=V_{G S 2}$
M2 sat. when $V_{D S 2} \geq V_{G S 2}-V_{T N} \rightarrow v_{O U T}-V_{D S 1} \geq V_{G G 2}-V_{D S 1}-V_{T N} \rightarrow v_{O U T} \geq V_{G G 2}-V_{T N}$
M3 is saturated when $V_{D D^{-}} v_{O U T} \geq V_{D D}-V_{G G 3}-\left|V_{T P}\right| \rightarrow v_{O U T} \leq V_{G G 3}+\left|V_{T P}\right|$

Large-Signal Voltage Swing Limits of the Cascode Amplifier
Maximum output voltage, vOUT (max):

$$
v_{O U T}(\max)=V_{D D}
$$

Minimum output voltage, $v_{O U T}(\mathrm{~min})$:
Referencing all potentials to the negative power supply (ground in this case), we may express the current through each of the devices, M1 through M3, as

$$
\begin{aligned}
i_{D 1} & =\beta_{1}\left(\left(V_{D D}-V_{T 1}\right) v_{D S 1}-\frac{v_{D S 1}}{2}\right) \approx \beta_{1}\left(V_{D D}-V_{T 1}\right) v_{D S 1} \\
i_{D 2} & =\beta_{2}\left(\left(V_{G G 2}-v_{D S 1}-V_{T 2}\right)\left(v_{O U T}-v_{D S 1}\right)-\frac{\left(v_{O U T}-v_{D S 1}\right)^{2}}{2}\right) \\
& \cong \beta_{2}\left(V_{G G 2}-v_{D S 1}-V_{T 2}\right)\left(v_{O U T}-v_{D S 1}\right)
\end{aligned}
$$

and

$$
i_{D 3}=\frac{\beta_{3}}{2}\left(V_{D D}-V_{G G 3}-\left|V_{T 3}\right|\right)^{2}
$$

where we have also assumed that both $v_{D S 1}$ and $v_{O U T}$ are small, and $v_{\mathrm{IN}}=V_{D D}$.
Solving for $v_{O U T}$ by realizing that $i_{D 1}=i_{D 2}=i_{D 3}$ and $\beta_{1}=\beta_{2}$ we get,

$$
\operatorname{vOUT}(\min)=\frac{\beta_{3}}{2 \beta_{2}}\left(V_{D D}-V_{G G 3}-\left|V_{T 3}\right|\right)^{2}\left(\frac{1}{V_{G G 2}-V_{T 2}}+\frac{1}{V_{D D}-V_{T 1}}\right)
$$

Example 5.3-1 - Calculation of the Min. Output Voltage for the Cascode Amplifier

(a.) Assume the values and parameters used for the cascode configuration plotted in the previous slide on the voltage transfer function and calculate the value of $v_{O U T}(\mathrm{~min})$.
(b.) Find the value of $v_{O U T}(\max)$ and $v_{O U T}(\mathrm{~min})$ where all transistors are in saturation.

Solution

(a.) Using the previous result gives,

$$
v_{\text {OUT }}(\mathrm{min})=0.50 \text { volts. }
$$

We note that simulation gives a value of about 0.75 volts. If we include the influence of the channel modulation on M3 in the previous derivation, the calculated value is 0.62 volts which is closer. The difference is attributable to the assumption that both $v_{D S 1}$ and $v_{O U T}$ are small.
(b.) The largest output voltage for which all transistors of the cascode amplifier are in saturation is given as

$$
v_{O U T}(\max)=V_{D D}-V_{S D 3}(\text { sat })
$$

and the corresponding minimum output voltage is

$$
v_{O U T}(\min)=V_{D S 1}(\mathrm{sat})+V_{D S 2}(\mathrm{sat}) .
$$

For the cascode amplifier of Fig. 5.3-2, these limits are 3.0 V and 2.7 V .
Consequently, the range over which all transistors are saturated is quite small for a 5 V power supply.

Small-Signal Midband Performance of the Cascode Amplifier

Small-signal model:

Small-signal model of cascode amplifier neglecting the bulk effect on M2.

Using nodal analysis, we can write,

$$
\begin{aligned}
& {\left[g_{d s 1}+g_{d s 2}+g_{m 2}\right] v_{1}-g_{d s 2} v_{\text {out }}=-g_{m 1} v_{\mathrm{in}}} \\
& -\left[g_{d s 2}+g_{m 2}\right] v_{1}+\left(g_{d s 2}+g_{d s 3}\right) v_{\text {out }}=0
\end{aligned}
$$

Solving for $v_{\text {out }} / v_{\text {in }}$ yields

$$
\frac{v_{\mathrm{out}}}{v_{\mathrm{in}}}=\frac{-g_{m 1}\left(g_{d s 2}+g_{m 2}\right)}{g_{d s 1} g_{d s 2}+g_{d s 1} g_{d s 3}+g_{d s 2} g_{d s 3}+g_{d s 3} g_{m 2}} \cong \frac{-g_{m 1}}{g_{d s 3}}=-\sqrt{\frac{2 K_{1}^{\prime} W_{1}}{L_{1} I_{D} \lambda^{2}{ }_{3}}}
$$

The small-signal output resistance is,

$$
r_{\text {out }}=\left[r_{d s 1}+r_{d s 2}+g_{m 2} r_{d s 1} r_{d s 2}\right] \| r_{d s 3} \cong r_{d s} 3
$$

Small-Signal Analysis of the Cascode Amplifier - Continued

It is of interest to examine the voltage gain of $v_{1} / v_{i n}$. From the previous nodal equations,

$$
\frac{v_{1}}{v_{\mathrm{in}}}=\frac{-g_{m 1}\left(g_{d s 2}+g_{d s 3}\right)}{g_{d s 1} g_{d s 2}+g_{d s 1} g_{d s 3}+g_{d s 2} g_{d s 3}+g_{d s 3} g_{m 2}} \approx\left(\frac{g_{d s 2}+g_{d s 3}}{g_{d s 3}}\right)\left(\frac{-g_{m 1}}{g_{m 2}}\right) \cong \frac{-2 g_{m 1}}{g_{m 2}}=-2 \sqrt{\frac{W_{1} L_{2}}{L_{1} W_{2}}}
$$

If the W / L ratios of M1 and M2 are equal and $g_{d s 2}=g_{d s 3}$, then $v_{1} / v_{i n}$ is approximately -2 . Why is this gain -2 instead of -1 ?

Consider the small-signal model looking into the source of M2:
The voltage loop is written as,

$$
\begin{aligned}
v_{s 2} & =\left(i_{1}-g_{m 2} v_{s 2}\right) r_{\mathrm{ds} 2}+i_{1} r_{d s 3} \\
& =i_{1}\left(r_{d s 2}+r_{\mathrm{ds} 3}\right)-g_{m 2} r_{d s 2} v_{s 2}
\end{aligned}
$$

Solving this equation for the ratio of $v_{s 2}$ to i_{1}
gives

$$
R_{s 2}=\frac{v_{s 2}}{i_{1}}=\frac{r_{d s 2}+r_{d s 3}}{1+g_{m 2} r_{d s 2}}
$$

We see that $R_{s 2}$ equals $2 / g_{m 2}$ if $r_{d s 2} \approx r_{d s 3}$. Thus, if $g_{m 1} \approx g_{m 2}$, the voltage gain $v_{1} / v_{i n} \approx-2$. Note that:
$r_{d s 3}=0$ that $R_{s 2} \approx 1 / g_{m 2}$ or $r_{d s 3}=r_{d s 2}$ that $R_{s 2} \approx 2 / g_{m 2}$ or $r_{d s 3} \approx r_{d s 2} g_{m} r_{d s}$ that $R_{s 2} \approx r_{d s}!!!$
Principle: The small-signal resistance looking into the source of a MOSFET depends on the resistance connected from the drain of the MOSFET to ac ground.

Frequency Response of the Cascode Amplifier

Small-signal model $\left(R_{S}=0\right)$:
where
$C_{1}=C_{g d 1}$,
$C_{2}=C_{b d 1}+C_{b s 2}+C_{g s 2}$, and

$C_{3}=C_{b d 2}+C_{b d 3}+C_{g d 2}+C_{g d 3}+C_{L}$
Fig. 5.3-4A
The nodal equations now become:

$$
\left(g_{m 2}+g_{d s 1}+g_{d s 2}+s C_{1}+s C_{2}\right) v_{1}-g_{d s 2} v_{\mathrm{out}}=-\left(g_{m 1}-s C_{1}\right) v_{\mathrm{in}}
$$

and

$$
-\left(g_{d s 2}+g_{m 2}\right) v_{1}+\left(g_{d s 2}+g_{d s 3}+s C_{3}\right) v_{\text {out }}=0
$$

Solving for $V_{\text {out }}(s) / V_{\text {in }}(s)$ gives,

$$
\frac{V_{\mathrm{out}}(s)}{V_{\text {in }}(s)}=\left(\frac{1}{1+a s+b s^{2}}\right)\left(\frac{-\left(g_{m 1}-s C_{1}\right)\left(g_{d s 2}+g_{m 2}\right)}{g_{d s 1} g_{d s 2}+g_{d s 3}\left(g_{m 2}+g_{d s 1}+g_{d s 2}\right)}\right)
$$

where

$$
a=\frac{C_{3}\left(g_{d s 1}+g_{d s 2}+g_{m 2}\right)+C_{2}\left(g_{d s 2}+g_{d s 3}\right)+C_{1}\left(g_{d s 2}+g_{d s 3}\right)}{g_{d s 1} g_{d s 2}+g_{d s 3}\left(g_{m 2}+g_{d s 1}+g_{d s 2}\right)}
$$

and

$$
b=\frac{C_{3}\left(C_{1}+C_{2}\right)}{g_{d s 1} g_{d s 2}+g_{d s 3}\left(g_{m 2}+g_{d s 1}+g_{d s 2}\right)}
$$

A Simplified Method of Finding an Algebraic Expression for the Two Poles

Assume that a general second-order polynomial can be written as:

$$
P(s)=1+a s+b s^{2}=\left(1-\frac{s}{p_{1}}\right)\left(1-\frac{s}{p_{2}}\right)=1-s\left(\frac{1}{p_{1}}+\frac{1}{p_{2}}\right)+\frac{s^{2}}{p_{1} p_{2}}
$$

Now if $\left|p_{2}\right| \gg\left|p_{1}\right|$, then $P(s)$ can be simplified as

$$
P(s) \approx 1-\frac{s}{p_{1}}+\frac{s^{2}}{p_{1} p_{2}}
$$

Therefore we may write p_{1} and p_{2} in terms of a and b as

$$
p_{1}=\frac{-1}{a} \text { and } p_{2}=\frac{-a}{b}
$$

Applying this to the previous problem gives,

$$
p_{1}=\frac{-\left[g_{d s 1} g_{d s 2}+g_{d s 3}\left(g_{m 2}+g_{d s 1}+g_{d s 2}\right)\right]}{C_{3}\left(g_{d s 1}+g_{d s 2}+g_{m 2}\right)+C_{2}\left(g_{d s 2}+g_{d s 3}\right)+C_{1}\left(g_{d s 2}+g_{d s 3}\right)} \approx \frac{-g_{d s 3}}{C_{3}}
$$

The nondominant root p_{2} is given as

$$
p_{2}=\frac{-\left[C_{3}\left(g_{d s 1}+g_{d s 2}+g_{m 2}\right)+C_{2}\left(g_{d s 2}+g_{d s 3}\right)+C_{1}\left(g_{d s 2}+g_{d s 3}\right)\right]}{C_{3}\left(C_{1}+C_{2}\right)} \approx \frac{-g_{m 2}}{C_{1}+C_{2}}
$$

Assuming C_{1}, C_{2}, and C_{3} are the same order of magnitude, and $g_{m 2}$ is greater than $g_{d s 3}$, then $\left|p_{1}\right|$ is smaller than $\left|p_{2}\right|$. Therefore the approximation of $\left|p_{2}\right| \gg\left|p_{1}\right|$ is valid.
Note that there is a right-half plane zero at $z_{1}=g_{m 1} / C_{1}$.

Driving Amplifiers from a High Resistance Source - The Miller Effect

Examine the frequency response of a current-source load inverter driven from a high resistance source:

Assuming the input is $I_{\text {in }}$, the nodal equations are,

$$
\left[G_{1}+s\left(C_{1}+C_{2}\right)\right] V_{1}-s C_{2} V_{\mathrm{out}}=I_{\mathrm{in}} \quad \text { and } \quad\left(g_{m 1}-s C_{2}\right) V_{1}+\left[G_{3}+s\left(C_{2}+C_{3}\right)\right] V_{\mathrm{out}}=0
$$ where

$$
G_{1}=G_{S}\left(=1 / R_{s}\right), \quad G_{3}=g_{d s 1}+g_{d s 2}, \quad C_{1}=C_{g s 1}, \quad C_{2}=C_{g d 1} \quad \text { and } C_{3}=C_{b d 1}+C_{b d 2}+C_{g d 2}
$$ Solving for $V_{\text {out }}(s) / V_{\mathrm{in}}(s)$ gives

$$
\frac{V_{\mathrm{out}}(s)}{V_{\mathrm{in}}(s)}=\frac{\left(s C_{2}-g_{m 1}\right) G_{1}}{G_{1} G_{3}+s\left[G_{3}\left(C_{1}+C_{2}\right)+G_{1}\left(C_{2}+C_{3}\right)+g_{m 1} C_{2}\right]+\left(C_{1} C_{2}+C_{1} C_{3}+C_{2} C_{3}\right) s^{2}}
$$

or

$$
\frac{V_{\mathrm{out}}(s)}{V_{\mathrm{in}}(s)}=\left(\frac{-g_{m 1}}{G_{3}}\right) \frac{\left[1-s\left(C_{2} / g_{m 1}\right)\right]}{1+\left[R_{1}\left(C_{1}+C_{2}\right)+R_{3}\left(C_{2}+C_{3}\right)+g_{m 1} R_{1} R_{3} C_{2}\right] s+\left(C_{1} C_{2}+C_{1} C_{3}+C_{2} C_{3}\right) R_{1} R_{3} s^{2}}
$$

Assuming that the poles are split allows the use of the previous technique to get,

$$
p_{1}=\frac{-1}{R_{1}\left(C_{1}+C_{2}\right)+R_{3}\left(C_{2}+C_{3}\right)+g_{m 1} R_{1} R_{3} C_{2}} \cong \frac{-1}{g_{m 1} R_{1} R_{3} C_{2}} \quad \text { and } p_{2} \cong \frac{-g_{m 1} C_{2}}{C_{1} C_{2}+C_{1} C_{3}+C_{2} C_{3}}
$$

The Miller effect has caused the input pole, $1 / R_{1} C_{1}$, to be decreased by a value of $g_{m 1} R_{3}$.

How does the Cascode Amplifier Solve the Miller Effect?

The dominant pole of the inverting amplifier with a large source resistance was found to be

$$
p_{1}(\text { inverter })=\frac{-1}{R_{1}\left(C_{1}+C_{2}\right)+R_{3}\left(C_{2}+C_{3}\right)+g_{m 1} R_{1} R_{3} C_{2}}
$$

Now if a cascode amplifier is used, R_{3}, can be approximated as $2 / g_{m}$ of the cascoding transistor (assuming the drain sees an $r_{d s}$ to ac ground).

$$
\begin{aligned}
\therefore \quad p_{1}(\text { cascode }) & =\frac{-1}{R_{1}\left(C_{1}+C_{2}\right)+\left(\frac{2}{g_{m}}\right)\left(C_{2}+C_{3}\right)+g_{m 1} R_{1}\left(\frac{2}{g_{m}}\right) C_{2}} \\
& =\frac{-1}{R_{1}\left(C_{1}+C_{2}\right)+\left(\frac{2}{g_{m}}\right)\left(C_{2}+C_{3}\right)+2 R_{1} C_{2}} \approx \frac{-1}{R_{1}\left(C_{1}+3 C_{2}\right)}
\end{aligned}
$$

Thus we see that p_{1} (cascode) $\gg p_{1}$ (inverter).

High Gain and High Output Resistance Cascode Amplifier

If the load of the cascode amplifier is a cascode current source, then both high output resistance and high voltage gain is achieved.

The output resistance is,

$$
r_{\text {out }} \cong\left[g_{m 2} r_{d s 1} r_{d s 2}\right]| |\left[g_{m 3} r_{d s 3} r_{d s 4}\right]=\frac{I_{D}^{-1.5}}{\frac{\lambda_{1} \lambda_{2}}{\sqrt{2 K_{2}^{\prime}(W / L)_{2}}}+\frac{\lambda_{3} \lambda_{4}}{\sqrt{2 K_{3}^{\prime}(W / L)_{3}}}}
$$

Knowing $r_{\text {out }}$, the gain is simply

$$
A_{v}=-g_{m 1} r_{\text {out }} \cong-g_{m 1}\left\{\left[g_{m 2} r_{d s 1} r_{d s 2}\right] \|\left[g_{m 3} r_{d s 3} r_{d s 4}\right]\right\} \cong \frac{\sqrt{2 K_{1}^{\prime}(W / L)_{1}} I_{D}^{-1}}{\frac{\lambda_{1} \lambda_{2}}{\sqrt{2 K_{2}^{\prime}(W / L)_{2}}}+\frac{\lambda_{3} \lambda_{4}}{\sqrt{2 K_{3}^{\prime}(W / L)_{3}}}}
$$

Example 5.3-2 - Comparison of the Cascode Amplifier Performance

Calculate the small-signal voltage gain, output resistance, the dominant pole, and the nondominant pole for the low-gain, cascode amplifier and the high-gain, cascode amplifier. Assume that $I_{D}=200$ microamperes, that all W / L ratios are $2 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$, and that the parameters of Table 3.1-2 are valid. The capacitors are assumed to be: $C_{g d}=3.5$ $\mathrm{fF}, \mathrm{C}_{g s}=30 \mathrm{fF}, \mathrm{C}_{b s n}=\mathrm{C}_{b d n}=24 \mathrm{fF}, \mathrm{C}_{b s p}=\mathrm{C}_{b d p}=12 \mathrm{fF}$, and $C_{L}=1 \mathrm{pF}$.

Solution

The low-gain, cascode amplifier has the following small-signal performance:

$$
\begin{aligned}
& A_{v}=-37.1 \mathrm{~V} / \mathrm{V} \\
& R_{\text {out }}=125 \mathrm{k} \Omega \\
& p_{1} \approx-g_{d s 3} / C_{3} \rightarrow 1.22 \mathrm{MHz} \\
& p_{2} \approx g_{m 2} /\left(C_{1}+C_{2}\right) \rightarrow 605 \mathrm{MHz} .
\end{aligned}
$$

The high-gain, cascode amplifier has the following small-signal performance:

$$
\begin{aligned}
& A_{\mathrm{V}}=-414 \mathrm{~V} / \mathrm{V} \\
& R_{\text {out }}=1.40 \mathrm{M} \Omega \\
& p_{1} \approx 1 / R_{\text {out }} C_{3} \rightarrow 108 \mathrm{kHz} \\
& p_{2} \approx g_{m 2} /\left(C_{1}+C_{2}\right) \rightarrow 579 \mathrm{MHz}
\end{aligned}
$$

(Note at this frequency, the drain of M2 is shorted to ground by the load capacitance, C_{L})

Designing Cascode Amplifiers

Pertinent design equations for the simple cascode amplifier.

Example 5.3-3 - Design of a Cascode Amplifier

The specs for a cascode amplifier are $A_{v}=-50 \mathrm{~V} / \mathrm{V}, v_{\text {OUT }}(\max)=4 \mathrm{~V}, v_{\text {OUT }}(\mathrm{min})=1.5 \mathrm{~V}$, $V_{D D}=5 \mathrm{~V}$, and $P_{\text {diss }}=1 \mathrm{~mW}$. The slew rate with a 10 pF load should be $10 \mathrm{~V} / \mu \mathrm{s}$ or greater.

Solution

The slew rate requires a current greater than $100 \mu \mathrm{~A}$ while the power dissipation requires a current less than $200 \mu \mathrm{~A}$. Compromise with $150 \mu \mathrm{~A}$. Beginning with M3,

$$
\frac{\mathrm{W}_{3}}{\mathrm{~L}_{3}}=\frac{2 I}{K_{P}\left[V_{D D^{-}-V_{O U T}}(\max)\right]^{2}}=\frac{2 \cdot 150}{50(1)^{2}}=6
$$

From this find $V_{G G 3}: V_{G G 3}=V_{D D}-\left|V_{T P}\right|-\sqrt{\frac{2 I}{K_{P}\left(\mathrm{~W}_{3} / \mathrm{L}_{3}\right)}}=5-1-\sqrt{\frac{2 \cdot 150}{50 \cdot 6}}=3 \mathrm{~V}$
Next,

$$
\frac{\mathrm{W}_{1}}{\mathrm{~L}_{1}}=\frac{\left(A_{\nu} \lambda\right)^{2} I}{2 K_{N}}=\frac{(50 \cdot 0.05)^{2}(150)}{2 \cdot 110}=2.73
$$

To design $\mathrm{W}_{2} / \mathrm{L}_{2}$, we will first calculate $V_{D S 1}(\mathrm{sat})$ and use the $v_{\text {OUT }}(\mathrm{min})$ specification to define $V_{D S 2}$ (sat).

$$
V_{D S 1}(\mathrm{sat})=\sqrt{\frac{2 I}{K_{N}\left(\mathrm{~W}_{1} / \mathrm{L}_{1}\right)}}=\sqrt{\frac{2 \cdot 150}{110 \cdot 4.26}}=0.8 \mathrm{~V}
$$

Subtracting this value from 1.5 V gives $V_{D S 2}(\mathrm{sat})=0.7 \mathrm{~V}$.
$\therefore \quad \frac{\mathrm{W}_{2}}{\mathrm{~L}_{2}}=\frac{2 I}{K_{N} V_{D S 2}(\mathrm{sat})^{2}}=\frac{2 \cdot 150}{110 \cdot 0.7^{2}}=5.57$
Finally,

$$
V_{G G 2}=V_{D S 1}(\mathrm{sat})+\sqrt{\frac{2 I}{K_{N}\left(\mathrm{~W}_{2} / \mathrm{L}_{2}\right)}}+V_{T N}=0.8 \mathrm{~V}+0.7 \mathrm{~V}+0.7 \mathrm{~V}=2.2 \mathrm{~V}
$$

SECTION 5.4-CURRENT AMPLIFIERS

What is a Current Amplifier?

- An amplifier that has a defined output-input current relationship
- Low input resistance
- High output resistance

Application of current amplifiers:

$R_{S} \gg R_{\text {in }} \quad$ and $\quad R_{\text {out }} \gg R_{L}$

Advantages of current amplifiers:

- Currents are not restricted by the power supply voltages so that wider dynamic ranges are possible with lower power supply voltages.
- -3dB bandwidth of a current amplifier using negative feedback is independent of the closed loop gain.

Frequency Response of a Current Amplifier with Current Feedback

Consider the following current amplifier with resistive negative feedback applied.

Assuming that the small-signal resistance looking into the current amplifier is much less than R_{1} or R_{2},

$$
i_{o}=A_{i}\left(i_{1}-i_{2}\right)=A_{i}\left(\frac{v_{i n}}{R_{1}}-i_{o}\right)
$$

Solving for i_{o} gives

$$
i_{o}=\left(\frac{A_{i}}{1+A_{i}}\right) \frac{v_{i n}}{R_{1}} \quad \rightarrow \quad v_{\text {out }}=R_{2} i_{o}=\frac{R_{2}}{R_{1}}\left(\frac{A_{i}}{1+A_{i}}\right) v_{i n}
$$

If $A_{i}(\mathrm{~s})=\frac{A_{o}}{\frac{s}{\omega_{A}}+1}$, then

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{2}}{R_{1}}\left(\frac{1}{1+\frac{1}{A_{i}(s)}}\right)=\frac{R_{2}}{R_{1}}\left(\frac{A_{o}}{\frac{s}{\omega_{A}}+\left(1+A_{o}\right)}\right)=\frac{R_{2}}{R_{1}}\left(\frac{A_{o}}{\left.1+A_{o}\right)}\left(\frac{1}{\frac{s}{\omega_{A}\left(1+A_{o}\right)}+1}\right)\right.
$$

$\therefore \quad \omega_{-3 \mathrm{~dB}}=\omega_{A}\left(1+A_{o}\right)$

Bandwidth Advantage of a Current Feedback Amplifier

The unity-gainbandwidth is,

$$
G B=\left|A_{v}(0)\right| \omega_{-3 \mathrm{~dB}}=\frac{R_{2} A_{o}}{R_{1}\left(1+A_{o}\right)} \cdot \omega_{A}\left(1+A_{o}\right)=\frac{R_{2}}{R_{1}} A_{o} \cdot \omega_{A}=\frac{R_{2}}{R_{1}} G B_{i}
$$

where $G B_{i}$ is the unity-gainbandwidth of the current amplifier.
Note that if $G B_{i}$ is constant, then increasing R_{2} / R_{1} (the voltage gain) increases $G B$.
Illustration:

Note that $G B_{2}>G B_{1}>G B_{i}$
The above illustration assumes that the $G B$ of the voltage amplifier realizing the voltage buffer is greater than the $G B$ achieved from the above method.

Current Amplifier using the Simple Current Mirror

$$
R_{\text {in }}=\frac{1}{g_{m 1}} R_{\text {out }}=\frac{1}{\lambda_{1} I_{o}} \quad \text { and } \quad A_{i}=\frac{W_{2} / L_{2}}{W_{1} / L_{1}} .
$$

Frequency response:

$$
p_{1}=\frac{-\left(g_{m 1}+g_{d s}\right)}{C_{1}+C_{2}}=\frac{-\left(g_{m 1}+g_{d s 1}\right)}{C_{b d 1}+C_{g s 1}+C_{g s 2}+C_{g d 2}} \approx \frac{-g_{m 1}}{C_{b d 1}+C_{g s 1}+C_{g s 2}+C_{g d 2}}
$$

Note that the bandwidth can be almost doubled by including the resistor, R.
(R removes $C_{g s 1}$ from p_{1})

Example 5.4-1- Performance of a Simple Current Mirror as a Current Amplifier

Find the small-signal current gain, A_{i}, the input resistance, $R_{i n}$, the output resistance, $R_{\text {out }}$, and the -3 dB frequency in Hertz for the current amplifier of Fig. 5.4-3(a) if $10 I_{1}=I_{2}$ $=100 \mu \mathrm{~A}$ and $W_{2} / L_{2}=10 W_{1} / L_{1}=10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$. Assume that $C_{b d 1}=10 \mathrm{fF}, C_{g s 1}=C_{g s 2}=$ 100 fF , and $C_{g s 2}=50 \mathrm{fF}$.

Solution

Ignoring channel modulation and mismatch effects, the small-signal current gain,

$$
A_{i}=\frac{W_{2} / L_{2}}{W_{1} / L_{1}} \approx 10 \mathrm{~A} / \mathrm{A} .
$$

The small-signal input resistance, $R_{i n}$, is approximately $1 / g_{m 1}$ and is

$$
R_{i n} \approx \frac{1}{\sqrt{2 K_{N}(1 / 1) 10 \mu \mathrm{~A}}}=\frac{1}{46.9 \mu \mathrm{~S}}=21.3 \mathrm{k} \Omega
$$

The small-signal output resistance is equal to

$$
R_{\text {out }}=\frac{1}{\lambda_{N} I_{2}}=250 \mathrm{k} \Omega .
$$

The -3 dB frequency is

$$
\omega_{-3 \mathrm{~dB}}=\frac{46.9 \mu \mathrm{~S}}{260 \mathrm{fF}}=180.4 \times 10^{6} \mathrm{radians} / \mathrm{sec} . \quad \rightarrow \quad f_{-3 \mathrm{~dB}}=28.7 \mathrm{MHz}
$$

Self-Biased Cascode Current Mirror Implementation of a Current Amplifier

Fig. 5.4-4

$$
R_{i n} \approx R+\frac{1}{g_{m 1}}, \quad R_{\text {out }} \approx r_{d s 2} g_{m 4} r_{d s 4}, \quad \text { and } \quad A_{i}=\frac{W_{2} / L_{2}}{W_{1} / L_{1}}
$$

Example 5.4-2 - Current Amplifier Implemented by the Self-Biased, Cascode

 Current MirrorAssume that I_{1} and I_{2} of the self-biased cascode current mirror are $100 \mu \mathrm{~A} . R$ has been designed to give a $V_{O N}$ of 0.1 V . Thus $R=1 \mathrm{k} \Omega$. Find the value of $R_{\text {in }}, R_{\text {out }}$, and A_{i} if the W/L ratios of all transistors are $182 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$.

Solution

The input resistance requires $g_{m 1}$ which is $\sqrt{2 \cdot 110 \cdot 182 \cdot 100}=2 \mathrm{mS}$
$\therefore \quad R_{\text {in }} \approx 1000 \Omega+500 \Omega=1.5 \mathrm{k} \Omega$
From our knowledge of the cascode configuration, the small signal output resistance should be

$$
R_{\text {out }} \approx g_{m 4} r_{d s 4} r_{d s 2}=(2001 \mu \mathrm{~S})(250 \mathrm{k} \Omega)(250 \mathrm{k} \Omega)=125 \mathrm{M} \Omega
$$

Because $V_{D S 1}=V_{D S 2}$, the small-signal current gain is

$$
A_{i}=\frac{W_{2} / L_{2}}{W_{1} / L_{1}}=1
$$

Simulation results using the level 1 model for this example give

$$
R_{\text {in }}=1.497 \mathrm{k} \Omega, R_{\text {out }}=164.7 \mathrm{M} \Omega \text { and } A_{i}=1.000 \mathrm{~A} / \mathrm{A} .
$$

Low-Input Resistance Current Amplifier

To decrease $R_{\text {in }}$ below $1 / g_{m}$ requires the use of negative, shunt feedback. Consider the following example.

Feedback concept:

Fig. 5.4-5

Input resistance without feedback $\approx r_{d s 1}$.
Loop gain $\approx\left(\frac{g_{m 1}}{g_{d s 1}}\right)\left(\frac{g_{m 3}}{g_{d s 3}}\right)$ assuming that the resistances of I_{1} and I_{3} are very large.

$$
\therefore R_{\text {in }}=\frac{R_{\text {in }}(\text { no fb. })}{1+\text { Loop gain }} \approx \frac{r_{d s} 1}{g_{m 1} r_{d s 1} g_{m 3} r_{d s 3}}=\frac{1}{g_{m 1} g_{m 3} r_{d s} 3}
$$

Small signal analysis:

$$
i_{i n}=g_{m 1} v_{g s 1}-g_{d s 1} v_{g s} 3
$$

and $v_{g s 3}=-v_{i n} \quad v_{g s 1}=v_{i n}-\left(g_{m 3} v_{g s 3} r_{d s 3}\right)=v_{i n}\left(1+g_{m 3} r_{d s 3}\right)$

$$
\therefore \quad i_{i n}=g_{m 1}\left(1+g_{m 3} r_{d s 3}\right) v_{i n}+g_{d s} 1 v_{i n} \approx g_{m 1} g_{m 3} r_{d s} 3 v_{i n} \quad \Rightarrow \quad R_{i n} \approx \frac{1}{g_{m 1} g_{m 3} r_{d s} 3}
$$

Differential-Input, Current Amplifiers

Definitions for the differential-mode, $i_{I D}$, and common-mode, $i_{I C}$, input currents of the differential-input current amplifier.

$$
i_{O}=A_{I D} i_{I D} \pm A_{I C} i_{I C}=A_{I D}\left(i_{1}-i_{2}\right) \pm A_{I C}^{(}\left(\frac{i_{1}+i_{2}}{2}\right)
$$

Implementations:

Summary

- Current amplifiers have a low input resistance, high output resistance, and a defined output-input current relationship
- Input resistances less than $1 / g_{m}$ require feedback

However, all feedback loops have internal poles that cause the benefits of negative feedback to vanish at high frequencies.
In addition, these feedback loops can have a slow time constant from a pole-zero pair.

- Voltage amplifiers using a current amplifier have high values of gain-bandwidth
- Current amplifiers are useful at low power supplies and for switched current applications

SECTION 5.5-OUTPUT AMPLIFIERS

General Considerations of Output Amplifiers

Requirements:
1.) Provide sufficient output power in the form of voltage or current.
2.) Avoid signal distortion.
3.) Be efficient
4.) Provide protection from abnormal conditions (short circuit, over temperature, etc.)

Types of Output Amplifiers:
1.) Class A amplifiers
2.) Source followers
3.) Push-pull amplifiers
4.) Substrate BJT amplifiers
5.) Amplifiers using negative shunt feedback

Class A Amplifiers

Current source load inverter:

A Class A circuit has current flow in the MOSFETs during the entire period of a

Fig. 5.5-1 sinusoidal signal.
Characteristics of Class A amplifiers:

- Unsymmetrical sinking and sourcing
- Linear
- Poor efficiency

$$
\text { Efficiency }=\frac{P_{R L}}{P_{S u p p l y}}=\frac{\frac{v_{O U T}(\mathrm{peak})^{2}}{2 R_{L}}}{\left(V_{D D^{-}} V_{S S}\right) I_{Q}}=\frac{\frac{v_{O U T}(\mathrm{peak})^{2}}{2 R_{L}}}{\left(V_{D D}-V_{S S}\right)\left(\frac{\left(V_{\left.D D^{-}-V_{S S}\right)}^{2 R_{L}}\right.}{2}\right.}=\left(\frac{v_{O U T}(\mathrm{peak})}{V_{D D}-V_{S S}}\right)^{2}
$$

Maximum efficiency occurs when $v_{O U T}($ peak $)=V_{D D}=\left|V_{S S}\right|$ which gives 25%.

Specifying the Performance of a Class A Amplifier

Output resistance:

$$
r_{\text {out }}=\frac{1}{g_{d s 1}+g_{d s 2}}=\frac{1}{\left(\lambda_{1}+\lambda_{2}\right) I_{D}}
$$

Current:

- Maximum sinking current is,

$$
\overline{\text { IOUT }}=\frac{K_{1}^{\prime} W_{1}}{2 L_{1}}\left(V_{D D}-V_{S S}-V_{T 1}\right)^{2}-I_{Q}
$$

- Maximum sourcing current is,

$$
\stackrel{+}{I O U T}=\frac{K_{2}^{\prime} W_{2}}{2 L_{2}}\left(V_{D D}-V_{G G 2}-\left|V_{T 2}\right|\right)^{2} \leq I_{Q}
$$

Requirements:

- Want $r_{\text {out }} \ll R_{L}$
- $\left|I_{\text {OUT }}\right|>C_{L} \cdot S R$
- $\left\lvert\, I_{\text {OUT }}>\frac{v_{O U T}(\mathrm{peak})}{R_{L}}\right.$

The maximum current is determined by both the current required to provide the necessary slew rate $\left(C_{L}\right)$ and to provide a voltage across the load resistor $\left(R_{L}\right)$.

Small-Signal Performance of the Class A Amplifier

Although we have considered the small-signal performance of the Class A amplifier as the current source load inverter, let us include the influence of the load.
The modified small-signal model:

The small-signal voltage gain is:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-g_{m 1}}{g_{d s 1}+g_{d s 2}+G_{L}}
$$

The small-signal frequency response includes:
A zero at

$$
z=\frac{g_{m 1}}{C_{g d 1}}
$$

and a pole at

$$
p=\frac{-\left(g_{d s 1}+g_{d s 2}+G_{L}\right)}{C_{g d 1}+C_{g d 2}+C_{b d 1}+C_{b d 2}+C_{L}}
$$

Example 5.5-1 - Design of a Simple Class-A Output Stage

Use Table 3.1-2 to design the W / L ratios of M1 and M2 so that a voltage swing of $\pm 2 \mathrm{~V}$ and a slew rate of $\cong 1 \mathrm{~V} / \mu \mathrm{s}$ is achieved if $R_{L}=20 \mathrm{k} \Omega$ and $C_{L}=1000 \mathrm{pF}$. Assume $V_{D D}=$ $\left|V_{S S}\right|=3 \mathrm{~V}$ and $V_{G G 2}=0 \mathrm{~V}$. Let $L=2 \mu \mathrm{~m}$ and assume that $C_{g d 1}=100 \mathrm{fF}$.

Solution

Let us first consider the effects of R_{L} and C_{L}.

$$
i_{O U T}(\text { peak })= \pm 2 \mathrm{~V} / 20 \mathrm{k} \Omega= \pm 100 \mu \mathrm{~A} \quad \text { and } \quad C_{L} \cdot S R=10-9 \cdot 10^{6}=1000 \mu \mathrm{~A}
$$

Since the slew rate current is so much larger than the current needed to meet the voltage specification across R_{L}, we can safely assume that all of the current supplied by the inverter is available to charge C_{L}.
Using a value of $\pm 1 \mathrm{~mA}$,

$$
\frac{W_{1}}{L_{1}}=\frac{2\left(I_{O U T}+I_{Q}\right)}{K_{N},\left(V_{\left.D D^{+}+\left|V_{S S}\right|-V_{T N}\right)^{2}}\right.}=\frac{4000}{110 \cdot(5.3)^{2}} \approx \frac{3 \mu \mathrm{~m}}{2 \mu \mathrm{~m}}
$$

and

The small-signal performance is $A_{v}=-8.21 \mathrm{~V} / \mathrm{V}$ (includes $R_{L}=20 \mathrm{k} \Omega$) and $r_{\text {out }}=50 \mathrm{k} \Omega$ The roots are, zero $=g_{m 1} / C_{g d 1} \Rightarrow .59 \mathrm{GHz}$ and pole $\left.=1 /\left[\left(R_{L} \| r_{\text {out }}\right) C_{L}\right)\right] \Rightarrow-11.14 \mathrm{kHz}$

Broadband Harmonic Distortion

The linearity of an amplifier can be characterized by its influence on a pure sinusoidal input signal.
Assume the input is,

$$
V_{i n}(\omega)=V_{p} \sin (\omega t)
$$

The output of an amplifier with distortion will be

$$
V_{\text {out }}(\omega)=a_{1} V_{p} \sin (\omega t)+a_{2} V_{p} \sin (2 \omega t)+\cdots+a_{n} V_{p} \sin (n \omega t)
$$

Harmonic distortion (HD) for the i th harmonic can be defined as the ratio of the magnitude of the i th harmonic to the magnitude of the fundamental.
For example, second-harmonic distortion would be given as

$$
H D_{2}=\frac{a_{2}}{a_{1}}
$$

Total harmonic distortion (THD) is defined as the square root of the ratio of the sum of all of the second and higher harmonics to the magnitude of the first or fundamental harmonic. Thus, $T H D$ can be expressed as

$$
T H D=\frac{\left[a_{2}^{2}+a_{3}^{2}+\cdots+a_{n}^{2}\right]^{1 / 2}}{a_{1}}
$$

The distortion of the class A amplifier is good for small signals and becomes poor at maximum output swings because of the nonlinearity of the voltage transfer curve for large-signal swing

Class-A Source Follower

N-Channel Source Follower with current sink bias:

Maximum output voltage swings:

$$
\begin{array}{lll}
v_{O U T}(\min) \approx V_{S S}-V_{O N 2}\left(\text { if } R_{L} \text { is large }\right) & \text { or } & v_{O U T}(\min) \approx-I_{Q} R_{L}\left(\text { if } R_{L} \text { is small }\right) \\
v_{O U T}(\max)=V_{D D}-V_{O N 1}\left(\text { if } v_{I N}>V_{D D}\right) & \text { or } & v_{O U T}(\max) \approx V_{D D}-V_{G S 1}
\end{array}
$$

Output Voltage Swing of the Follower

The previous results do not include the bulk effect on $V_{T 1}$ of $V_{G S 1}$.
Therefore,

$$
\begin{aligned}
& V_{T 1}=V_{T 01}+\gamma\left[\sqrt{2 l \phi_{F} \mid-v_{B S}}-\sqrt{2\left|\phi_{F}\right|}\right] \approx V_{T 01}+\gamma \sqrt{v_{S B}}=V_{T 01}+\gamma_{1} \sqrt{v_{O U T}(\max)-V_{S S}} \\
\therefore & v_{O U T}(\max)-V_{S S} \approx V_{D D^{-}} V_{S S^{-}}-V_{O N 1^{-}}-V_{T 1}=V_{D D^{-}} V_{S S^{-}} V_{T 01}-\gamma_{1} \sqrt{v_{O U T}(\max)-V_{S S}}
\end{aligned}
$$

Define $v_{O U T}(\max)-V_{S S}=v_{O U T}{ }^{\prime}(\max)$
which gives the quadratic,

$$
v_{O U T}{ }^{\prime}(\max)+\gamma_{1} \sqrt{v_{O U T} \prime}(\max)-\left(V_{D D^{-}}-V_{S S}-V_{O N 1}-V_{T 01}\right)=0
$$

Solving the quadratic gives,

$$
v_{O U T}{ }^{\prime}(\max) \approx \frac{\gamma_{1}^{2}}{4}-\frac{\gamma_{1}}{2} \sqrt{\gamma_{1}^{2}+4\left(V_{D D^{-}} V_{S S^{-}}-V_{O N 1}-V_{T 01}\right)}+\frac{\gamma_{1}^{2}+4\left(V_{D D^{-}} V_{S S^{-}}-V_{O N 1}-V_{T 01}\right)}{4}
$$

If $V_{D D}=2.5 \mathrm{~V}, \gamma_{N}=0.4 \mathrm{~V}^{1 / 2}, V_{T N 1}=0.7 \mathrm{~V}$, and $V_{O N 1}=0.2 \mathrm{~V}$, then $v_{O U T}{ }^{\prime}(\max)=3.661 \mathrm{~V}$ and

$$
v_{\text {OUT }}(\max)=3.661-2.5=0.8661 \mathrm{~V}
$$

Maximum Sourcing and Sinking Currents for the Source Follower
Maximum Sourcing Current (into a short circuit):
We assume that the transistors are in saturation and $V_{D D}=-V_{S S}=2.5 \mathrm{~V}$, thus

$$
I_{O U T}(\text { sourcing })=\frac{K_{1}^{\prime}{ }_{1} W_{1}}{2 L_{1}}\left[V_{D D}-v_{O U T}-V_{T 1}\right]^{2-I_{Q}}
$$

where $v_{I N}$ is assumed to be equal to $V_{D D}$.
If $W_{1} / L_{1}=10$ and if $v_{\text {OUT }}=0 \mathrm{~V}$, then

$$
V_{T 1}=1.08 \mathrm{~V} \Rightarrow I_{\text {OUT }} \text { equal to } 1.11 \mathrm{~mA} .
$$

However, as $v_{\text {OUT }}$ increases above 0 V , the current rapidly decreases.
Maximum Sinking Current:
For the current sink load, the sinking current is whatever the sink is biased to provide. $I_{O U T}($ sinking $)=I_{Q}$

Efficiency of the Source Follower

Assume that the source follower can swing to power supply:

Efficiency $=\frac{P_{R L}}{P_{S u p p l y}}=\frac{\frac{v_{O U T}(\mathrm{peak})^{2}}{2 R_{L}}}{\left(V_{D D^{-}} V_{S S}\right) I_{Q}}=\frac{\frac{v_{O U T}(\mathrm{peak})^{2}}{2 R_{L}}}{\left(V_{D D}-V_{S S}\right)\left(\frac{\left(V_{\left.D D^{-}-V_{S S}\right)}^{2 R_{L}}\right.}{2}\right)}=\left(\frac{v_{O U T}(\mathrm{peak})}{V_{D D}-V_{S S}}\right)^{2}$
Maximum efficiency occurs when $v_{O U T}($ peak $)=V_{D D}=\left|V_{S S}\right|$ which gives 25%.
Comments:

- Maximum efficiency occurs for the minimum value of R_{L} which gives maximum swing.
- Other values of R_{L} result in less efficiency (and smaller signal swings before clipping)
- We have ignored the fact that the dynamic Q point cannot travel along the full length of the load line because of minimum and maximum voltage limits.

Small Signal Performance of the Source Follower

Small-signal model:

Fig. 040-04

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m 1}}{g_{d s 1}+g_{d s 2}+g_{m 1}+g_{m b s 1}+G_{L}} \cong \frac{g_{m 1}}{g_{m 1}+g_{m b s}+G_{L}} \cong \frac{g_{m 1} R_{L}}{1+g_{m 1} R_{L}}
$$

If $V_{D D}=-V_{S S}=2.5 \mathrm{~V}, V_{\text {out }}=0 \mathrm{~V}, W_{1} / L_{1}=10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}, W_{2} / L_{2}=1 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$,
and $I_{D}=500 \mu \mathrm{~A}$, then
For the current sink load follower $\left(R_{L}=\infty\right)$:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=0.869 \mathrm{~V} / \mathrm{V} \text {, if the bulk effect were ignored, then } \frac{V_{\text {out }}}{V_{\text {in }}}=0.963 \mathrm{~V} / \mathrm{V}
$$

For a finite load, $R_{L}=1000 \Omega$:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=0.512 \mathrm{~V} / \mathrm{V}
$$

Small Signal Performance of the Source Follower - Continued

The output resistance is:

$$
R_{\text {out }}=\frac{1}{g_{m 1}+g_{m b s}+g_{d s 1}+g_{d s 2}+G_{L}}
$$

For the current sink load follower:

$$
R_{\text {out }}=830 \Omega
$$

The frequency response of the source follower:

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{\left(g_{m 1}+s C_{1}\right)}{g_{d s 1}+g_{d s 2}+g_{m 1}+g_{m b s 1}+G_{L}+s\left(C_{1}+C_{2}\right)}
$$

where

$$
C_{1}=\text { capacitances connected between the input and output } \approx C_{G S 1}
$$

$$
\begin{aligned}
& C_{2}=C_{b s 1}+C_{b d 2}+C_{g d 2}\left(\text { or } C_{g s 2}\right)+C_{L} \\
& z=-\frac{g_{m 1}}{C_{1}} \quad \text { and } \quad p \approx-\frac{g_{m 1}+G_{L}}{C_{1}+C_{2}}
\end{aligned}
$$

The presence of a LHP zero leads to the possibility that in most cases the pole and zero will provide some degree of cancellation leading to a broadband response.

Push-Pull Source Follower

Can both sink and source current and provide a slightly lower output resistance.

Efficiency:
Depends on how the transistors are biased.

- Class B - one transistor

has current flow for only 180° of the sinusoid (half period)
\therefore Efficiency $=\frac{P_{R L}}{P_{V D D}}=\frac{\frac{v_{O U T}(\text { peak })^{2}}{2 R_{L}}}{\left(V_{D D}-V_{S S}\right)\left(\frac{1}{2}\right)\left(\frac{2 v_{O U T}(\mathrm{peak})}{\pi R_{L}}\right)}=\frac{\pi}{2} \frac{v_{O U T}(\mathrm{peak})}{V_{D D}-V_{S S}}$
Maximum efficiency occurs when $v_{O U T}($ peak $)=V_{D D}$ and is 78.5%
- Class AB - each transistor has current flow for more than 180° of the sinusoid.

Maximum efficiency is between 25% and 78.5%

Illustration of Class B and Class AB Push-Pull, Source Follower

Output current and voltage characteristics of the push-pull, source follower $\left(R_{L}=1 \mathrm{k} \Omega\right)$:

Comments:

- Note that $v_{O U T}$ cannot reach the extreme values of $V_{D D}$ and $V_{S S}$
- $I_{O U T}{ }^{+}(\max)$ and $I_{O U T}{ }^{-}(\max)$ is always less than $V_{D D} / R_{L}$ or $V_{S S} / R_{L}$
- For $v_{O U T}=0 \mathrm{~V}$, there is quiescent current flowing in M1 and M2 for Class AB
- Note that there is significant distortion at $v_{I N}=0 \mathrm{~V}$ for the Class B push-pull follower

Small-Signal Performance of the Push-Pull Follower

Model:

Fig. 060-03

$$
\begin{aligned}
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m 1}+g_{m 2}}{g_{d s 1}+g_{d s 2}+g_{m 1}+g_{m b s 1}+g_{m 2}+g_{m b s}+G_{L}} \\
& R_{\text {out }}=\frac{1}{g_{d s 1}+g_{d s 2}+g_{m 1}+g_{m b s}+g_{m 2}+g_{m b s 2}}\left(\text { does not include } R_{L}\right)
\end{aligned}
$$

If $V_{D D}=-V_{S S}=2.5 \mathrm{~V}, V_{\text {out }}=0 \mathrm{~V}, I_{D 1}=I_{D 2}=500 \mu \mathrm{~A}$, and $\mathrm{W} / \mathrm{L}=20 \mu \mathrm{~m} / 2 \mu \mathrm{~m}, A_{\nu}=0.787$ ($R_{L}=\infty$) and $R_{\text {out }}=448 \Omega$.
A zero and pole are located at

$$
z=\frac{-\left(g_{m 1}+g_{m 2}\right)}{C_{1}} \quad p=\frac{-\left(g_{d s 1}+g_{d s 2}+g_{m 1}+g_{m b s 1}+g_{m 2}+g_{m b s}+G_{L}\right)}{C_{1}+C_{2}} .
$$

These roots will be high-frequency because the associated resistances are small.

Push-Pull, Common Source Amplifiers

Similar to the class A but can operate as class B providing higher efficiency.

Comments:

- The batteries $V_{T R 1}$ and $V_{T R 2}$ are necessary to control the bias current in M1 and M2.
- The efficiency is the same as the push-pull, source follower.

Practical Implementation of the Push-Pull, Common Source Amplifier

$V_{G G 3}$ and $V_{G G 4}$ can be used to bias this amplifier in class AB or class B operation.
Note, that the bias current in M6 and M8 is not dependent upon $V_{D D}$ or $V_{S S}$ (assuming $V_{G G 3}$ and $V_{G G 4}$ are not dependent on $V_{D D}$ and $V_{S S}$.

Illustration of Class B and Class AB Push-Pull, Inverting Amplifier

Output current and voltage characteristics of the push-pull, inverting amplifier $\left(R_{L}=\right.$ $1 \mathrm{k} \Omega$):

Comments:

- Note that there is significant distortion at $v_{I N}=0 \mathrm{~V}$ for the Class B inverter
- Note that $v_{O U T}$ cannot reach the extreme values of $V_{D D}$ and $V_{S S}$
- $I_{O U T}{ }^{+}(\max)$ and $I_{O U T}(\max)$ is always less than $V_{D D} / R_{L}$ or $V_{S S} / R_{L}$
- For $v_{O U T}=0 \mathrm{~V}$, there is quiescent current flowing in M1 and M2 for Class AB

What about the use of BJTs?

Comments:

- Can use either substrate or lateral BJTs.
- Small-signal output resistance is $1 / g_{m}$ which can easily be less than 100Ω.
- Unfortunately, only PNP or NPN BJTs are available but not both on a standard CMOS technology.
- In order for the BJT to sink (or source) large currents, the base current, i_{B}, must be large. Providing large currents as the voltage gets to extreme values is difficult for MOSFET circuits to accomplish.
- If one considers the MOSFET driver, the emitter can only pull to within $v_{B E}+V_{O N}$ of the power supply rails. This value can be 1 V or more.
We will consider the BJT as an output stage in more detail in Sec. 7.1.

Use of Negative, Shunt Feedback to Reduce the Output Resistance

Concept:

$$
R_{\text {out }}=\frac{r_{d s 1} \| r_{d s 2}}{1+\text { Loop Gain }}
$$

Comments:

- Can achieve output resistances as low as 10Ω.
- If the error amplifiers are not balanced, it is difficult to control the quiescent current in M1 and M2
- Great linearity because of the strong feedback
- Can be efficient if operated in class B or class AB

Simple Implementation of Neg., Shunt Feedback to Reduce the Output Resistance

$$
\begin{array}{ll}
& \text { Loop gain } \approx\left(\frac{R_{1}}{R_{1}+R_{2}}\right)\left(\frac{g_{m 1}+g_{m 2}}{g_{d s 1}+g_{d s 2}+G_{L}}\right) \\
\therefore \quad & R_{\text {out }}=\frac{r_{d s 1} \| r_{d s 2}}{1+\left(\frac{R_{1}}{R_{1}+R_{2}}\right)\left(\frac{g_{m 1}+g_{m 2}}{g_{d s 1}+g_{d s 2}+G_{L}}\right)}
\end{array}
$$

Let $R_{1}=R_{2}, R_{L}=\infty, I_{\text {Bias }}=500 \mu \mathrm{~A}, W_{1} / L_{1}=100 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and $W_{2} / L_{2}=200 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$.
Thus, $g_{m 1}=3.316 \mathrm{mS}, g_{m 2}=3.162 \mathrm{mS}, r_{d s 1}=50 \mathrm{k} \Omega$ and $r_{d s 2}=40 \mathrm{k} \Omega$.

$$
\therefore \quad R_{\text {out }}=\frac{50 \mathrm{k} \Omega| | 40 \mathrm{k} \Omega}{1+0.5\left(\frac{3316+3162}{25+20}\right)}=\frac{22.22 \mathrm{k} \Omega}{1+0.5(143.9)}=304 \Omega \quad\left(R_{\text {out }}=5.42 \mathrm{k} \Omega \text { if } R_{L}=1 \mathrm{k} \Omega\right)
$$

Quasi-Complementary Output Stages

Quasi-complementary connections are used to improve the performance of the NMOS or PMOS transistor.
Composite connections:

Fig. 5.5-11
NMOS Equivalent:
PMOS Equivalent:

\therefore The composite has an enhanced $K_{N}, \quad \therefore$ The composite has an enhanced K_{P},

Summary of Output Amplifiers

- The objectives are to provide output power in form of voltage and/or current.
- In addition, the output amplifier should be linear and be efficient.
- Low output resistance is required to provide power efficiently to a small load resistance.
- High source/sink currents are required to provide sufficient output voltage rate due to large load capacitances.
- Types of output amplifiers considered:

Class A amplifier
Source follower
Class B and AB amplifier
Use of BJTs
Negative shunt feedback

SECTION 5.6-HIGH-GAIN AMPLIFIER ARCHITECTURES

High-Gain Amplifiers used in Negative Feedback Circuits

Consider the general, single-loop, negative feedback circuit:
$x=$ either voltage or current
$A=\frac{x_{O}}{x_{i}}=$ high-gain amplifier
$F=$ feedback network
Closed-loop gain:

Fig. 5.6-1
$A_{f}=\frac{x_{O}}{x_{S}}=\frac{A}{1+A F}$
If $A F \gg 1$, then,
$A_{f}=\frac{x_{O}}{x_{S}} \approx \frac{1}{F}$
Therefore, to precisely define the closed-loop gain, A_{f}, we only need to make A large and A_{f} becomes dependent on F which can be determined by passive elements.

Types of Amplifiers

The gain of an amplifier is given as

$$
A=\frac{x_{O}}{x_{i}}
$$

Therefore, since x can be voltage or current, there are four types of amplifiers as summarized below.

Types of Amplifers	Voltage- controlled, current-source	Voltage- controlled, voltage-source	Current- controlled, current-source	Current- controlled, voltage-source
x_{i} variable*	Voltage	Voltage	Current	Current
x_{O} variable	Current	Voltage	Current	Voltage
Desired R_{i}	Large	Large	Small	Small
Desired R_{O}	Large	Small	Large	Small

* The x_{i}, x_{s}, and x_{f} must all be the same type of variable, voltage or current.

Voltage-Controlled, Current-Source (VCCS) Amplifier

Fig. 5.6-2

$$
\frac{i_{o}}{v_{S}}=G_{M}=\frac{G_{m} R_{o} R_{i}}{\left(R_{i}+R_{S}\right)\left(R_{o}+R_{L}\right)}
$$

This amplifier is sometimes called an operational transconductance amplifier (OTA).

Voltage-Controlled, Voltage-Source (VCVS) Amplifier

Fig. 5.1

$$
\frac{v_{o}}{v_{S}}=A_{V}=\frac{A_{v} R_{i} R_{L}}{\left(R_{S}+R_{i}\right)\left(R_{o}+R_{L}\right)}
$$

This amplifier is normally called an operational amplifier.

Current-Controlled, Current-Source (CCCS) Amplifier

Fig. 5.6-4

$$
\frac{i_{o}}{i_{S}}=A_{I}=\frac{A_{i} R_{S} R_{o}}{\left(R_{S}+R_{i}\right)\left(R_{o}+R_{L}\right)}
$$

Current-Controlled, Voltage-Source (CCVS) Amplifier

Fig. 5.6-5

$$
\frac{v_{O}}{i_{S}}=R_{M}=\frac{R_{\mathrm{m}} R_{\mathrm{S}} R_{\mathrm{L}}}{\left(R_{i}+R_{S}\right)\left(R_{o}+R_{L}\right)}
$$

SECTION 5.7-SUMMARY

This chapter presented the following subjects:
5.1 Inverting Amplifiers

Class A (diode load and current sink/source load)
Class AB of B (push-pull)
5.2 Differential Amplifiers

Need good common mode rejection
An excellent input stage for integrated circuit amplifiers
5.3 Cascode Amplifiers

Useful for controlling the poles of an amplifier
5.4 Current Amplifiers

Good for low power supplies
5.5 Output Amplifiers

Minimize the output resistance
Maximize the current sinking/sourcing capability
5.6 High-Gain Architectures

Possible block-level implementations using the blocks of this chapter.

[^0]: ${ }^{\dagger}$ It can be shown that the current mirror causes this requirement to be invalid because the drain loads are not matched. However, we will continue to use the assumption regardless.

