CHAPTER 7 - HIGH-PERFORMANCE CMOS OPERATIONAL AMPLIFIERS

Chapter Outline

7.1 Buffered Op Amps
7.2 High-Speed/Frequency Op Amps
7.3 Differential Output Op Amps
7.4 Micropower Op Amp
7.5 Low-Noise Op Amps
7.6 Low Voltage Op Amps
7.7 Summary

Goal

To illustrate the degrees of freedom and choices of different circuit architectures that can enhance the performance of a given op amp.

SECTION 7.1 - BUFFERED OP AMPS

Objective

The objective of this presentation is:
1.) Illustrate the method of lowering the output resistance of simple op amps
2.) Show examples

Outline

- Open-loop MOSFET buffered op amps
- Closed-loop MOSFET buffered op amps
- BJT output op amps
- Summary

What is a Buffered Op Amp?

A buffered op amp is an op amp with a low value of output resistance, R_{o}.
Typically, $\quad 10 \Omega \leq R_{O} \leq 1000 \Omega$

Requirements

Generally the same as for the output amplifier:

- Low output resistance
- Large output signal swing
- Low distortion
- High efficiency

Types of Buffered Op Amps

- Buffered op amps using MOSFETs

With and without negative feedback

- Buffered op amps using BJTs

Source-Follower, Push-Pull Output Op Amp

$R_{\text {out }}=\frac{1}{g_{m 21}+g_{m 22}} \leq 1000 \Omega, A_{\nu}(0)=65 \mathrm{~dB}\left(I_{\text {Bias }}=50 \mu \mathrm{~A}\right)$, and $G B=60 \mathrm{MHz}$ for $C_{L}=1 \mathrm{pF}$
Output bias current?
M18-M19-M21-M22 loop $\Rightarrow V_{S G 18}+V_{G S 19}=V_{S G 21}+V_{G S 22}$
which gives

$$
\sqrt{\frac{2 I_{18}}{K_{P} S_{18}}}+\sqrt{\frac{2 I_{19}}{K_{N} S_{19}}}=\sqrt{\frac{2 I_{21}}{K_{P} S_{21}}}+\sqrt{\frac{2 I_{22}}{K_{N} S_{22}}}
$$

Crossover-Inverter, Buffer Stage Op Amp

Principle: If the buffer has high output resistance and voltage gain (common source), this is okay if when loaded by a small R_{L} the gain of this stage is approximately unity.

This op amp is capable of delivering 160 mW to a 100Ω load while only dissipating 7 mW of quiescent power!

Crossover-Inverter, Buffer Stage Op Amp - Continued
How does the output buffer work?
The two inverters, M1-M3 and M2-M4 are designed to work over different regions of the buffer input voltage, $v_{i n}$ '.
Consider the idealized voltage transfer characteristic of the crossover inverters:

Fig. 7.1-3

Crossover voltage $\equiv V_{C}=V_{B}-V_{A} \geq 0$
V_{C} is designed to be small and positive for worst case variations in processing (Maximum value of $V_{C} \approx 110 \mathrm{mV}$)

Crossover-Inverter, Buffer Stage Op Amp - Continued

Performance Results for the Crossover-Inverter, Buffer Stage CMOS Op Amp

Specification	Performance
Supply Voltage	$\pm 6 \mathrm{~V}$
Quiescent Power	7 mW
Output Swing $(100 \Omega$	8.1 Vpp
Load)	
Open-Loop Gain (100	78.1 dB
Load)	
Unity Gainbandwidth	260 kHz
Voltage Spectral Noise	$1.7 \mu \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Density at 1 kHz	
PSRR at 1 kHz	55 dB
CMRR at 1 kHz	42 dB
Input Offset Voltage	10 mV
(Typical)	

Compensation of Op Amps with Output Amplifiers

Compensation of a three-stage amplifier:
This op amp introduces a third pole, $p^{\prime} 3$ (what about zeros?)
With no compensation,

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{-A_{v o}}{\left(\frac{s}{p^{\prime} 1}-1\right)\left(\frac{s}{p^{\prime} 2}-1\right)\left(\frac{s}{p^{\prime} 3}-1\right)}
$$

Illustration of compensation choices:

Low Output Resistance Op Amp

To get low output resistance using MOSFETs, negative feedback must be used. Ideal implementation:

Comments:

- The output resistance will be equal to $r_{d s 1} \| r_{d s 2}$ divided by the loop gain
- If the error amplifiers are not perfectly matched, the bias current in M1 and M2 is not defined

Low Output Resistance Op Amp - Continued

Offset correction circuitry:

The feedback circuitry of the two error amplifiers tries to insure that the voltages in the loop sum to zero. Without the M9-M12 feedback circuit, there is no way to adjust the output for any error in the loop. The circuit works as follows:

When $V_{O S}$ is positive, M6 tries to turn off and so does M6A. IM9 reduces thus reducing $I_{M 12}$. A reduction in $I_{M 12}$ reduces $I_{M 8 A}$ thus decreasing $V_{G S 8 A}$. $V_{G S 8 A}$ ideally decreases by an amount equal to VOS. A similar result holds for negative offsets and offsets in EA2.

Low Output Resistance Op Amp - Continued

Error amplifiers:

Low Output Resistance Op Amp - Complete Schematic

Compensation:
Uses nulling Miller compensation.
Short circuit protection:
MP3-MN3-MN4-MP4-MP5
MN3A-MP3A-MP4A-MN4A-MN5A
(max. output $\pm 60 \mathrm{~mA}$)

Low Output Resistance Op Amp - Continued

Table 7.1-2 Performance Characteristics of the Low Output Resistance Op Amp:

Specification	Simulated Results	Measured Results	
Power Dissipation	7.0 mW	5.0 mW	
Open Loop Voltage Gain	82 dB	83 dB	
Unity Gainbandwidth	500 kHz	420 kHz	
Input Offset Voltage	0.4 mV	1 mV	
$\operatorname{PSRR}^{+}(0) / \mathrm{PSRR}-(0)$	$85 \mathrm{~dB} / 104 \mathrm{~dB}$	$86 \mathrm{~dB} / 106 \mathrm{~dB}$	
$\operatorname{PSRR}^{+}(1 \mathrm{kHz})$ /PSRR-(1kHz)	$81 \mathrm{~dB} / 98 \mathrm{~dB}$	$80 \mathrm{~dB} / 98 \mathrm{~dB}$	
$\mathrm{THD}\left(\mathrm{V}_{\mathrm{in}}=3.3 \mathrm{~V}_{\mathrm{pp}}\right)$			
$\mathrm{R}_{\mathrm{L}}=300 \Omega$	0.03\%	0.13\% (1 kHz)	
$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	0.08\%	0.32\% (4 kHz)	
$\mathrm{THD}\left(\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}_{\mathrm{pp}}\right)$			
$\mathrm{R}_{\mathrm{L}}=15 \mathrm{~K} \Omega$	0.05\%	0.13\% (1 kHz)	
$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	0.16\%	0.20\% (4 kHz)	
Settling Time (0.1\%)	$3 \mu \mathrm{~s}$	$<5 \mu \mathrm{~s}$	
Slew Rate	$0.8 \mathrm{~V} / \mu \mathrm{s}$	$0.6 \mathrm{~V} / \mu \mathrm{s}$	
$1 / \mathrm{f}$ Noise at 1 kHz	-	$130 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Broadband Noise	-	$49 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	
$R_{\text {out }} \approx \frac{r_{d s 6} \\| r_{d s 6 A}}{\text { Loop Gain }} \approx \frac{50 \mathrm{k} \Omega}{5000}=$			

Low-Output Resistance Op Amp - Continued

Component sizes for the low-resistance op amp:

Transistor/Capacitor	$\mu \mathrm{m} / \mu \mathrm{m}$ or pF	Transistor/Capacitor	$\mu \mathrm{m} / \mu \mathrm{m}$ or pF
M16	$184 / 9$	M8A	$481 / 6$
M17	$66 / 12$	M13	$66 / 12$
M8	$184 / 6$	M9	$27 / 6$
M1, M2	$36 / 10$	M10	$6 / 22$
M3, M4	$194 / 6$	M11	$14 / 6$
M3H, M4H	$16 / 12$	M12	$140 / 6$
M5	$145 / 12$	MP3	$8 / 6$
M6	$2647 / 6$	MN3	$244 / 6$
MRC	$48 / 10$	MP4	$43 / 12$
C	11.0	MN4	$12 / 6$
M1A, M2A	$88 / 12$	MP5	$6 / 6$
M3A, M4A	$196 / 6$	MN3A	$6 / 6$
M3HA, M4HA	$10 / 12$	MP3A	$337 / 6$
M5A	$229 / 12$	MN4A	$24 / 12$
M6A	$2420 / 6$	MP4A	$20 / 12$
C $_{\text {F }}$	10.0	MN5A	$6 / 6$

Simpler Implementation of Negative Feedback to Achieve Low Output Resistance

Output Resistance:

$$
R_{\text {out }}=\frac{R_{o}}{1+L G}
$$

where

$$
R_{o}=\frac{1}{g_{d s 6}+g_{d s 7}}
$$

and

$$
|L G|=\frac{g_{m 2}}{2 g_{m 4}}\left(g_{m 6}+g_{m 7}\right) R_{o}
$$

Therefore, the output resistance is

$$
R_{\text {out }}=\frac{1}{\left(g_{d s 6^{+}} g_{d s 7}\right)\left[1+\left(\frac{g_{m 2}}{2 g_{m 4}}\right)\left(g_{m 6^{+}} g_{m 7}\right) R_{o}\right]} .
$$

Example 7.1-1 - Low Output Resistance Using the Simple Shunt Negative Feedback Buffer

Find the output resistance of above op amp using the model parameters of Table 3.1-2.

Solution

The current flowing in the output transistors, M6 and M7, is 1 mA which gives R_{o} of

$$
R_{o}=\frac{1}{\left(\lambda_{N}+\lambda_{P}\right) 1 \mathrm{~mA}}=\frac{1000}{0.09}=11.11 \mathrm{k} \Omega
$$

To calculate the loop gain, we find that

$$
\begin{aligned}
& g_{m 2}=\sqrt{2 K_{N} \cdot \cdot 10 \cdot 100 \mu \mathrm{~A}}=469 \mu \mathrm{~S} \\
& g_{m 4}=\sqrt{2 K_{P} \cdot \cdot 1 \cdot 100 \mu \mathrm{~A}}=100 \mu \mathrm{~S}
\end{aligned}
$$

and

$$
g_{m 6}=\sqrt{2 K_{P}^{\prime} \cdot 10 \cdot 1000 \mu \mathrm{~A}}=1 \mathrm{mS}
$$

Therefore, the loop gain is

$$
|L G|=\frac{469}{100} \quad 12 \cdot 11.11=104.2
$$

Solving for the output resistance, $R_{\text {out }}$, gives

$$
R_{\text {out }}=\frac{11.11 \mathrm{k} \Omega}{1+104.2}=106 \Omega \quad\left(\text { Assumes that } R_{L} \text { is large }\right)
$$

BJTs Available in CMOS Technology

Illustration of an NPN substrate BJT available in a p-well CMOS technology:

Comments:

- g_{m} of the BJT is larger than the FET so that the output resistance w/o feedback is lower
- Can use the lateral or substrate BJT but since the collector is on ac ground, the substrate BJT is preferred
- Current is required to drive the BJT

Two-Stage Op Amp with a Class-A BJT Output Buffer Stage

Purpose of the M8-M9 source follower:
1.) Reduce the output resistance (includes whatever is seen from the base to ground divided by $1+\beta_{F}$)
2.) Reduces the output load at the drains of M6 and M7

Small-signal output resistance :

$$
R_{\text {out }} \approx \frac{r_{\pi 10}+\left(1 / g_{m 9}\right)}{1+\beta_{F}}=\frac{1}{g_{m 10}}+\frac{1}{g_{m 9}\left(1+\beta_{F}\right)}
$$

$$
=51.6 \Omega+6.7 \Omega=58.3 \Omega \text { where } I_{10}=500 \mu \mathrm{~A}, I_{8}=100 \mu \mathrm{~A}, W_{9} / L 9=100 \text { and } \beta_{F} \text { is } 100
$$

Maximum output voltage:

$$
v_{O U T}(\max)=V_{D D}-V_{S D 8}(\text { sat })-v_{B E 10}=V_{D D}-\sqrt{\frac{2 K_{P}}{I_{8}\left(W_{8} / L_{8}\right)}}-V_{t} \ln \left(\frac{I_{c 10}}{I_{s 10}}\right)
$$

Voltage gain:

$$
\frac{v_{\text {out }}}{v_{\text {in }}} \approx\left(\frac{g_{m 1}}{g_{d s 2}+g_{d s 4}}\right)\left(\frac{g_{m 6}}{g_{d s 6}+g_{d s 7}}\right)\left(\frac{g_{m 9}}{g_{m 9}+g_{m b s} 9+\mathrm{g}_{\mathrm{ds} 8}+g_{\pi 10}}\right)\left(\frac{g_{m 10} R_{L}}{1+g_{m 10} R_{L}}\right)
$$

Compensation will be more complex because of the additional stages.

Example 7.1-2 - Designing the Class-A, Buffered Op Amp

Use the parameters of Table 3.1-2 along with the BJT parameters of $I_{S}=10^{-14} \mathrm{~A}$ and $\beta_{F}=100$ to design the class-A, buffered op amp to give the following specifications.
Assume the channel length is to be $1 \mu \mathrm{~m}$.
$V_{D D}=2.5 \mathrm{~V} \quad V_{S S}=-2.5 \mathrm{~V} \quad \mathrm{~GB}=5 \mathrm{MHz} \quad A_{v d}(0) \geq 5000 \mathrm{~V} / \mathrm{V} \quad$ Slew rate $\geq 10 \mathrm{~V} / \mu \mathrm{s}$
$R_{L}=500 \Omega \quad R_{\text {out }} \leq 100 \Omega \quad C_{L}=100 \mathrm{pF} \quad I C M R=-1 \mathrm{~V}$ to 2 V

Solution

Because the specifications above are similar to the two-stage design of Ex. 6.3-1, we can use these results for the first two stages of our design. However, we must convert the results of Ex. 6.3-1 to a PMOS input stage. The results of doing this give $W_{1}=W_{2}=$ $6 \mu \mathrm{~m}, W_{3}=W_{4}=7 \mu \mathrm{~m}, W_{5}=11 \mu \mathrm{~m}, W_{6}=43 \mu \mathrm{~m}$, and $W_{7}=34 \mu \mathrm{~m}$.
BJT follower:
$S R=10 \mathrm{~V} / \mu \mathrm{s}$ and 100 pF capacitor give $I_{11}=1 \mathrm{~mA}$.
$\therefore \quad$ If $W_{13}=44 \mu \mathrm{~m}$, then $W_{11}=44 \mu \mathrm{~m}(1000 \mu \mathrm{~A} / 30 \mu \mathrm{~A})=1467 \mu \mathrm{~m}$.

$$
I_{11}=1 \mathrm{~mA} \Rightarrow 1 / g_{m 10}=0.0258 \mathrm{~V} / 1 \mathrm{~mA}=25.8 \Omega
$$

MOS follower:
To source 1 mA , the BJT must provide 2 mA which requires $20 \mu \mathrm{~A}$ from the MOS follower. Therefore, select a bias current of $100 \mu \mathrm{~A}$ for M 8 .
If $W_{12}=44 \mu \mathrm{~m}$, then $W_{8}=44 \mu \mathrm{~m}(100 \mu \mathrm{~A} / 30 \mu \mathrm{~A})=146 \mu \mathrm{~m}$.

Example 7.1-2 - Continued

If $1 / g_{m 10}$ is 25.8Ω, then design $g_{m 9}$ as

$$
g_{m 9}=\frac{1}{\left(R_{\text {out }}-\left(1 / g_{m 10}\right)\right)\left(1+\beta_{F}\right)}=\frac{1}{(100-25.8)(101)}=133.4 \mu \mathrm{~S} \quad g_{m 9} \text { and } I_{9} \Rightarrow \quad W / L=0.809
$$

Let us select $W / L=10$ for M9 in order to make sure that the contribution of M9 to the output resistance is sufficiently small and to increase the gain closer to unity. This gives a transconductance of M9 of $300 \mu \mathrm{~S}$.

To calculate the voltage gain of the MOS follower we need to find $g_{m b s} 9$.

$$
\therefore \quad g_{m b s 9}=\frac{g_{m 9} \gamma_{\mathrm{N}}}{2 \sqrt{2 \phi_{F}+V_{B S 9}}}=\frac{300 \cdot 0.4}{2 \sqrt{0.7+2}}=36.5 \mu \mathrm{~S}
$$

where we have assumed that the value of $V_{S B 9}$ is approximately 2 V .

$$
\therefore \quad A_{M O S}=\frac{300 \mu \mathrm{~S}}{300 \mu \mathrm{~S}+36.5 \mu \mathrm{~S}+4 \mu \mathrm{~S}+5 \mu \mathrm{~S}}=0.8683 \mathrm{~V} / \mathrm{V} .
$$

The voltage gain of the BJT follower is

$$
A_{B J T}=\frac{500}{25.8+500}=0.951 \mathrm{~V} / \mathrm{V}
$$

Thus, the gain of the op amp is

$$
A_{\nu d}(0)=(7777)(0.8683)(0.951)=6422 \mathrm{~V} / \mathrm{V}
$$

The power dissipation of this amplifier is, $\quad P_{\text {diss. }}=5 \mathrm{~V}(1255 \mu \mathrm{~A})=6.27 \mathrm{~mW}$

Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage

This amplifier can reduce the quiescent power dissipation.

Slew Rate:

$$
S R^{+}=\frac{I_{\mathrm{OUT}}^{+}}{C_{L}}=\frac{\left(1+\beta_{F}\right) I_{7}}{C_{L}} \quad \text { and } \quad S R^{-}=\frac{\beta_{9}\left(V_{D D}-1 \mathrm{~V}+\left|V_{S S}\right|-V_{T 0}\right)^{2}}{2 C_{L}}
$$

If $\beta_{F}=100, C_{L}=1000 \mathrm{pF}$ and $I_{7}=95 \mu \mathrm{~A}$ then $S R^{+}=8.59 \mathrm{~V} / \mu \mathrm{s}$.
Assuming a $W_{9} / L_{9}=60\left(I_{9}=133 \mu \mathrm{~A}\right), \pm 2.5 \mathrm{~V}$ power supplies and $C_{L}=1000 \mathrm{pF}$ gives $S R^{-}$ $=35.9 \mathrm{~V} / \mu \mathrm{s}$.
(The current is not limited by I_{7} as it is for the positive slew rate.)

Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage

Small-signal characteristics:

Nodal equations:

$$
\begin{aligned}
g_{m I} V_{\text {in }} & =\left(G_{I}+s C_{c}\right) V_{1}-s C_{c} V_{2}+0 V_{\text {out }} \\
0 & =\left(g_{m I I}-s C_{c}\right) V_{1}+\left(G_{I I}+g_{\pi}+s C_{c}+s C_{\pi}\right) V_{2}-\left(g_{\pi}+s C_{\pi}\right) V_{\text {out }} \\
0 & \cong g_{m 9} V_{1}-\left(g_{m 13}+s C_{\pi}\right) V_{2}+\left(g_{m 13}+s C_{\pi}\right) V_{\text {out }} \quad \text { where } g_{\pi}>G_{3}
\end{aligned}
$$

The approximate voltage transfer function is:

$$
\frac{V_{9}(s)}{V_{\text {in }}(s)} \approx A_{\nu 0} \frac{\left(\left(s / z_{1}\right)-1\right)\left(\left(s / z_{2}\right)-1\right)}{\left.\left(s / p_{1}\right)-1\right)\left(\left(s / p_{2}\right)-1\right)}
$$

where

$$
\begin{array}{lc}
A_{v 0}=\frac{-g_{m I} g_{m I I}}{G_{I} G_{I I}} \quad z_{1}=\frac{1}{\frac{C_{c}}{g_{m I I}}-\frac{C_{\pi}}{g_{m 13}}\left[1+\frac{g_{m 9}}{g_{m I I}}\right]} & z_{2}=-\frac{g_{m 13}}{C_{\pi}}+\frac{g_{m I I}}{C_{c}}\left[1+\frac{g_{m 9}}{g_{m I I}}\right] \\
\left.p_{1}=\frac{-G_{I} G_{I I}}{g_{m I I} C_{c}}\left[1+\frac{g_{m 9}}{\beta_{F} g_{m I I}}+\frac{C_{\pi}}{C_{c}}\left(\frac{G_{I} G_{I I}}{g_{m 13} g_{m I I}}\right)\right]\right]^{-1} & p_{2} \cong \frac{-g_{m 13} g_{m I I}}{\left(g_{m I I}+g_{m 9}\right) C_{\pi}}
\end{array}
$$

Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage - Continued

Output stage current, $I_{C 8}$:

$$
I_{C 8}=I_{D 9}=\frac{S_{9}}{S_{6}} I_{D 6}=\frac{60}{43} 95 \mu \mathrm{~A}=133 \mu \mathrm{~A}
$$

Small-signal output resistance:

$$
r_{\text {out }}=\frac{r_{\pi}+R_{I I}}{1+\beta_{F}}=\frac{19.668 \mathrm{k} \Omega+116.96 \mathrm{k} \Omega}{101}=1353 \Omega
$$

if $I_{6}=I_{7}=95 \mu \mathrm{~A}$, and $\beta_{F}=100$.
Loading effect of R_{L} on the voltage transfer curve (increasing W_{9} / L_{9} will improve the negative part at the cost of power dissipation):

Example 7.1-3 - Performance of the Two-Stage, Class AB Output Buffer

Using the transistor currents given above for the output stages (output stage of the two-stage op amp and the buffer stage), find the small-signal output resistance and the maximum output voltage when $R_{L}=50 \Omega$. Use the W/L values of Example 7.1-2 and assume that the NPN BJT has the parameters of $\beta_{F}=100$ and $I_{S}=10 \mathrm{fA}$.

Solution

It was shown on the previous slide that the small-signal output resistance is

$$
r_{\text {out }}=\frac{r_{\pi}+r_{d s 6} \| r_{d s 7}}{1+\beta_{F}}=\frac{19.668 \mathrm{k} \Omega+116.96 \mathrm{k} \Omega}{101}=1353 \Omega
$$

Obviously, the MOS buffer of Fig. 7.1-11 would decrease this value.
The maximum output voltage is given above is only valid if the load current is small. If this is not the case, then a better approach is to assume that all of the current in M7 becomes base current for Q 8 . This base current is multiplied by $1+\beta_{F}$ to give the sourcing current. If M9 is off, then all this current flows through the load resistor to give an output voltage of

$$
v_{\text {OUI }}(\max) \approx\left(1+\beta_{F}\right) I_{7} R_{L}
$$

If the value of $v_{O U T}(\max)$ is close to $V_{D D}$, then the source-drain voltage across M7 may be too small to be in saturation causing I_{7} to decrease. Using the above equation, we calculate $v_{\text {OUT }}(\max)$ as (101) $\cdot 95 \mu \mathrm{~A} \cdot 50 \Omega$ or 0.48 V which is close to the simulation results shown using the parameters of Table 3.1-2.

SUMMARY

- A buffered op amp requires an output resistance between $10 \Omega \leq R_{O} \leq 1000 \Omega$
- Output resistance using MOSFETs only can be reduced by,
- Source follower output $\left(1 / g_{m}\right)$
- Negative shunt feedback (frequency is a problem in this approach)
- Use of substrate (or lateral) BJT's can reduce the output resistance because g_{m} is larger than the g_{m} of a MOSFET
- Adding a buffer stage to lower the output resistance will most like complicate the compensation of the op amp

SECTION 7.2 - HIGH SPEED/FREQUENCY OP AMPS

Objective

The objective of this presentation is:
1.) Explore op amps having high frequency response and/or high slew rate
2.) Give examples

Outline

- Extending the GB of conventional op amps
- Switched op amps
- Current feedback op amps
- Programmable gain amplifiers
- Parallel path op amps
- Summary

What is the Influence of $\boldsymbol{G B}$ on the Frequency Response?

The op amp is primarily designed to be used with negative feedback. When the product of the op amp gain and feedback gain (loss) is not greater than unity, negative feedback does not work satisfactorily.
Example of a gain of -10 voltage amplifier:

What causes the GB?
We know that

$$
G B=\frac{g_{m}}{C}
$$

where g_{m} is the transconductance that converts the input voltage to current and C is the capacitor that causes the dominant pole.
This relationship assumes that all higher-order poles are greater than $G B$.

What is the Limit of $G B$?

The following illustrates what happens when the next higher pole is not greater than $G B$:

For a two-stage op amp, the poles and zeros are:

1.) Dominant pole $\quad p_{1}=\frac{-g_{m 1}}{A_{\nu}(0) C_{C}}$
2.) Output pole $\quad p_{2}=\frac{-g_{m 6}}{C_{L}}$
3.) Mirror pole

$$
p_{3}=\frac{-g_{m 3}}{C_{g s 3}+C_{g s 4}}
$$

4.) Nulling pole
$p_{4}=\frac{-1}{R_{z} \mathrm{C}_{I}}$
5.) Nulling zero

$$
z_{1}=\frac{-1}{R_{z} \mathrm{C}_{C^{\prime}}-\left(C_{C} / g_{m 6}\right)}
$$

A Procedure to Increase the $\boldsymbol{G B}$ of a Two-Stage Op Amp

1.) Use the nulling zero to cancel the closest pole beyond the dominant pole.
2.) The maximum $G B$ would be equal to the magnitude of the second closest pole beyond the dominant pole.
3.) Adjust the dominant pole so that $2.2 G B \approx$ (second closest pole beyond the dominant pole)
Illustration which assumes that p_{2} is the next closest pole beyond the dominant pole:

Example 7.2-1 - Increasing the GB of the Op Amp Designed in Ex. 6.3-1
Use the two-stage op amp designed in Example 6.3-1 and apply the above approach to increase the gainbandwidth as much as possible.

Solution

1.) First find the values of p_{2}, p_{3}, and p_{4}.
(a.) From Ex. 6.3-2, we see that

$$
p_{2}=-94.25 \times 106 \mathrm{rads} / \mathrm{sec} .
$$

(b.) p_{3} was found in Ex. 6.3-1 as

$$
p_{3}=-2.81 \times 10^{9} \mathrm{rads} / \mathrm{sec}
$$

(c.) To find p_{4}, we must find C_{I} which is the output capacitance of the first stage of the op amp. C_{I} consists of the following capacitors,

$$
C_{I}=C_{b d 2}+C_{b d 4}+C_{g s 6}+C_{g d 2}+C_{g d 4}
$$

For $C_{b d 2}$ the width is $3 \mu \mathrm{~m} \Rightarrow \mathrm{~L} 1+\mathrm{L} 2+\mathrm{L} 3=3 \mu \mathrm{~m} \Rightarrow \mathrm{AS} / \mathrm{AD}=9 \mu \mathrm{~m}^{2}$ and $\mathrm{PS} / \mathrm{PD}=12 \mu \mathrm{~m}$.
For $C_{b d 4}$ the width is $15 \mu \mathrm{~m} \Rightarrow \mathrm{~L} 1+\mathrm{L} 2+\mathrm{L} 3=3 \mu \mathrm{~m} \Rightarrow \mathrm{AS} / \mathrm{AD}=45 \mu \mathrm{~m}^{2}$ and $\mathrm{PS} / \mathrm{PD}=36 \mu \mathrm{~m}$.
From Table 3.2-1:

$$
\begin{aligned}
& C_{b d 2}=\left(9 \mu \mathrm{~m}^{2}\right)\left(770 \times 10^{-6} \mathrm{~F} / \mathrm{m}^{2}\right)+(12 \mu \mathrm{~m})\left(380 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)=6.93 \mathrm{fF}+4.56 \mathrm{fF}=11.5 \mathrm{fF} \\
& C_{b d 4}=\left(45 \mu \mathrm{~m}^{2}\right)\left(560 \times 10^{-6} / \mathrm{m}^{2}\right)+(36 \mu \mathrm{~m})\left(350 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)=25.2 \mathrm{fF}+12.6 \mathrm{~F} \approx 37.8 \mathrm{fF}
\end{aligned}
$$

Example 7.2-1 - Continued

$C_{g s 6}$ is given by Eq. (10b) of Sec. 3.2 and is

$$
\begin{aligned}
C_{g s 6} & =C G D O \cdot W_{6}+0.67\left(C_{o x} W_{6} L_{6}\right)=\left(220 \times 10^{-12}\right)\left(94 \times 10^{-6}\right)+(0.67)\left(24.7 \times 10^{-4}\right)\left(94 \times 10^{-12}\right) \\
& =20.7 \mathrm{fF}+154.8 \mathrm{fF}=175.5 \mathrm{fF} \\
C_{g d 2} & =220 \times 10^{-12} \times 3 \mu \mathrm{~m}=0.66 \mathrm{fF} \quad \text { and } C_{g} d 4=220 \times 10^{-12} \times 15 \mu \mathrm{~m}=3.3 \mathrm{fF}
\end{aligned}
$$

Therefore, $C_{I}=11.5 \mathrm{fF}+37.8 \mathrm{fF}+175.5 \mathrm{fF}+0.66 \mathrm{fF}+3.3 \mathrm{fF}=228.8 \mathrm{fF}$. Although $C_{b d 2}$ and $C_{b d 4}$ will be reduced with a reverse bias, let us use these values to provide a margin. In fact, we probably ought to double the whole capacitance to make sure that other layout parasitics are included. Thus let C_{I} be 300 fF .
In Ex. 6.3-2, R_{z} was $4.591 \mathrm{k} \Omega$ which gives $p_{4}=-0.726 \times 10^{9} \mathrm{rads} / \mathrm{sec}$.
2.) Using the nulling zero, z_{1}, to cancel p_{2}, gives p_{4} as the next smallest pole.

For 60° phase margin $G B=\left|p_{4}\right| / 2.2$ if the next smallest pole is more than $10 G B$.

$$
\therefore G B=0.726 \times 10^{9} / 2.2=0.330 \times 10^{9} \mathrm{rads} / \mathrm{sec} . \text { or } 52.5 \mathrm{MHz} .
$$

This value of $G B$ is designed from the relationship that $G B=g_{m 1} / C_{c}$. Assuming $g_{m 1}$ is constant, then $C_{C}=g_{m 1} / G B=\left(94.25 \times 10^{-6}\right) /\left(0.330 \times 10^{9}\right)=286 \mathrm{fF}$. It might be useful to increase $g_{m 1}$ in order to keep C_{C} above the surrounding parasitic capacitors ($C_{g d 6}=$ 20.7 fF). The success of this method assumes that there are no other roots with a magnitude smaller than $10 G B$.

Example 7.2-2 - Increasing the GB of the Folded Cascode Op Amp of Ex. 6.5-3

Use the folded-cascode op amp designed in Example 6.5-3 and apply the above approach to increase the gainbandwidth as much as possible. Assume that the drain/source areas are equal to $2 \mu \mathrm{~m}$ times the width of the transistor and that all voltage dependent capacitors are at zero voltage.

Solution

The poles of the folded cascode op amp are: $p_{A} \approx \frac{-1}{R_{A} C_{A}} \quad$ (the pole at the source of M6) $p_{B} \approx \frac{-1}{R_{B} C_{B}} \quad$ (the pole at the source of M7)
 $p_{6} \approx \frac{-1}{\left(R_{2}+1 / g_{m 10}\right) C_{6}}$ (the pole at the drain of M6)
$p_{8} \approx \frac{-g_{m 8}}{C_{8}}$ (the pole at the source of M8)
$p_{9} \approx \frac{-g_{m 9}}{C_{9}}$ (the pole at the source of M9) and $p_{10} \approx \frac{-g_{m 10}}{C_{10}}$ (the pole at the gates of M10 and M11)

Example 7.2-2 - Continued

Let us evaluate each of these poles.
1,) For p_{A}, the resistance R_{A} is approximately equal to $g_{m 6}$ and C_{A} is given as

$$
C_{A}=C_{g s 6}+C_{b d 1}+C_{g d 1}+C_{b d 4}+C_{b s 6}+C_{g d 4}
$$

From Ex. 6.5-3, $g_{m 6}=744.6 \mu \mathrm{~S}$ and capacitors giving C_{A} are found using the parameters of Table 3.2-1 as,

$$
\begin{aligned}
& C_{g s 6}=\left(220 \times 10^{\left.-12.80 \times 10^{-6}\right)+(0.67)\left(80 \times 10^{-6} \cdot 10-6.24 .7 \times 10^{-4}\right)=149 \mathrm{fF}}\right. \\
& C_{b d 1}=(770 \times 10-6)(35.9 \times 10-6.2 \times 10-6)+\left(380 \times 10^{-12}\right)\left(2 \cdot 37.9 \times 10^{-6}\right)=84 \mathrm{fF} \\
& C_{g d 1}=\left(220 \times 10^{-12.35 .9 \times 10-6)=8 \mathrm{fF}}\right. \\
& C_{b d 4}=C_{b s 6}=(560 \times 10-6)\left(80 \times 10-6.2 \times 10^{-6}\right)+\left(350 \times 10^{-12}\right)\left(2 \cdot 82 \times 10^{-6}\right)=147 \mathrm{fF}
\end{aligned}
$$

and

$$
C_{g d 4}=(220 \times 10-12)(80 \times 10-6)=17.6 \mathrm{fF}
$$

Therefore,

$$
C_{A}=149 \mathrm{fF}+84 \mathrm{fF}+8 \mathrm{fF}+147 \mathrm{fF}+17.6 \mathrm{fF}+147 \mathrm{fF}=0.553 \mathrm{pF}
$$

Thus,

$$
p_{A}=\frac{-744.6 \times 10^{-6}}{0.553 \times 10^{-12}}=-1.346 \times 109 \mathrm{rads} / \mathrm{sec} .
$$

2.) For the pole, p_{B}, the capacitance connected to this node is

$$
C_{B}=C_{g d 2}+C_{b d 2}+C_{g s 7}+C_{g d 5}+C_{b d 5}+C_{b s 7}
$$

Example 7.2-2 - Continued

The various capacitors above are found as

$$
\begin{aligned}
& C_{g d 2}=\left(220 \times 10^{-12} \cdot 35.9 \times 10^{-6}\right)=8 \mathrm{fF} \\
& C_{b d 2}=\left(770 \times 10^{-6}\right)\left(35.9 \times 10^{-6} 2 \times 10^{-6}\right)+\left(380 \times 10^{-12}\right)\left(2.37 .9 \times 10^{-6}\right)=84 \mathrm{fF} \\
& C_{g s 7}=\left(220 \times 10^{\left.-12.80 \times 10^{-6}\right)+(0.67)\left(80 \times 10^{-6} \cdot 10^{-6} \cdot 24.7 \times 10^{-4}\right)=149 \mathrm{fF}}\right. \\
& C_{g d 5}=\left(220 \times 10^{-12}\right)\left(80 \times 10^{-6}\right)=17.6 \mathrm{fF}
\end{aligned}
$$

and

$$
C_{b d 5}=C_{b s 7}=\left(560 \times 10^{-6}\right)\left(80 \times 10^{-6} \cdot 2 \times 10^{-6}\right)+\left(350 \times 10^{-12}\right)\left(2 \cdot 82 \times 10^{-6}\right)=147 \mathrm{fF}
$$

The value of C_{B} is the same as C_{A} and $g_{m 6}$ is assumed to be the same as $g_{m 7}$ giving $p_{B}=$ $p_{A}=-1.346 \times 10^{9} \mathrm{rads} / \mathrm{sec}$.
3.) For the pole, p_{6}, the capacitance connected to this node is

$$
C_{6}=C_{b d 6}+C_{g d 6}+C_{g s 8}+C_{g s 9}
$$

The various capacitors above are found as

$$
\begin{aligned}
& C_{b d 6}=\left(560 \times 10^{-6}\right)\left(80 \times 10^{-6} .2 \times 10^{-6}\right)+\left(350 \times 10^{-12}\right)\left(2 \cdot 82 \times 10^{-6}\right)=147 \mathrm{fF} \\
& C_{g s 8}=\left(220 \times 10^{\left.-12.36 .4 \times 10^{-6}\right)+(0.67)\left(36.4 \times 10^{-6} \cdot 10^{-6} \cdot 24.7 \times 10^{-4}\right)=67.9 \mathrm{fF}}\right.
\end{aligned}
$$

and

$$
C_{g s 9}=C_{g s 8}=67.9 \mathrm{fF} \quad C_{g d 6}=C_{g d 5}=17.6 \mathrm{fF}
$$

Therefore,

$$
C_{6}=147 \mathrm{fF}+17.6 \mathrm{fF}+67.9 \mathrm{fF}+67.9 \mathrm{fF}=0.300 \mathrm{pF}
$$

Example 7.2-2 - Continued

From Ex. 6.5-3, $R_{2}=2 \mathrm{k} \Omega$ and $g_{m 6}=744.6 \times 10^{-6}$. Therefore, p_{6}, can be expressed as

$$
-p_{6}=\frac{1}{\left(2 \times 10^{3}+(106 / 744.6)\right) 0.300 \times 10-12}=0.966 \times 10^{9} \mathrm{rads} / \mathrm{sec} .
$$

4.) Next, we consider the pole, $p 8$. The capacitance connected to this node is

$$
C_{8}=C_{b d 10}+C_{g d 10}+C_{g s 8}+C_{b s 8}
$$

These capacitors are given as,

$$
\begin{aligned}
& C_{b s 8}=C_{b d 10}=\left(770 \times 10^{-6}\right)\left(36.4 \times 10^{\left.-6.2 \times 10^{-6}\right)}+\left(380 \times 10^{-12}\right)\left(2.38 .4 \times 10^{-6}\right)=85.2 \mathrm{fF}\right. \\
& C_{g s 8}=\left(220 \times 10^{\left.-12.36 .4 \times 10^{-6}\right)+(0.67)\left(36.4 \times 10^{-6} \cdot 10^{-6} 24.7 \times 10^{-4}\right)=67.9 \mathrm{fF}}\right.
\end{aligned}
$$

and

$$
C_{g d 10}=\left(220 \times 10^{-12}\right)(36.4 \times 10-6)=8 \mathrm{fF}
$$

The capacitance C_{8} is equal to

$$
C_{8}=67.9 \mathrm{fF}+8 \mathrm{fF}+85.2 \mathrm{fF}+85.2 \mathrm{fF}=0.246 \mathrm{pF}
$$

Using the g_{m} of Ex. 6.5-3 of $774.6 \mu \mathrm{~S}$, the pole $p 8$ is found as, $-p 8=3.149 \times 109 \mathrm{rads} / \mathrm{sec}$.
5.) The capacitance for the pole at $p 9$ is identical with C_{8}. Therefore, since $g_{m 9}$ is also $774.6 \mu \mathrm{~S}$, the pole $p 9$ is equal to $p 8$ and found to be $-p 9=3.149 \times 109 \mathrm{rads} / \mathrm{sec}$.
6.) Finally, the capacitance associated with p_{10} is given as

$$
C_{10}=C_{g s 10}+C_{g s 11}+C_{b d 8}
$$

These capacitors are given as

Example 7.2-2 - Continued

$$
C_{g s 10}=C_{g s 11}=\left(220 \times 10^{-12.36 .4 \times 10^{-6}}\right)+(0.67)\left(36.4 \times 10^{-6} \cdot 10^{-6} \cdot 24.7 \times 10^{-4}\right)=67.9 \mathrm{fF}
$$

and

$$
C_{b d 8}=\left(770 \times 10^{-6}\right)\left(36.4 \times 10^{-6} \cdot 2 \times 10^{-6}\right)+\left(380 \times 10^{-12}\right)\left(2 \cdot 38.4 \times 10^{-6}\right)=85.2 \mathrm{fF}
$$

Therefore,

$$
C_{10}=67.9 \mathrm{fF}+67.9 \mathrm{fF}+85.2 \mathrm{fF}=0.221 \mathrm{pF}
$$

which gives the pole p_{10} as $-744.6 \times 10-6 / 0.246 \times 10^{-12}=-3.505 \times 10^{9} \mathrm{rads} / \mathrm{sec}$.
The poles are summarized below:

$$
\begin{array}{lll}
p_{A}=-1.346 \times 109 \mathrm{rads} / \mathrm{sec} & p_{B}=-1.346 \times 109 \mathrm{rads} / \mathrm{sec} & p_{6}=-0.966 \times 109 \mathrm{rads} / \mathrm{sec} \\
p_{8}=-3.149 \times 109 \mathrm{rads} / \mathrm{sec} & p_{9}=-3.149 \times 10^{9} \mathrm{rads} / \mathrm{sec} & p_{10}=-3.505 \times 10^{9} \mathrm{rads} / \mathrm{sec}
\end{array}
$$

The smallest of these poles is p_{6}. Since p_{A} and p_{B} are not much larger than p_{6}, we will find the new $G B$ by dividing p_{6} by 5 (rather than 2.2) to get 200×106 rads $/ \mathrm{sec}$. Thus the new $G B$ will be $200 / 2 \pi$ or 32 MHz . The magnitude of the dominant pole is given as

$$
p_{\text {dominant }}=\frac{G B}{A_{v d}(0)}=\frac{200 \times 10^{6}}{7,464}=26,795 \mathrm{rads} / \mathrm{sec} .
$$

The value of load capacitor that will give this pole is

$$
C_{L}=\frac{1}{p_{\text {dominant }} \cdot R_{\text {out }}}=\frac{1}{26.795 \times 10^{3} \cdot 19.4 \mathrm{M} \Omega} \approx 1.9 \mathrm{pF}
$$

Therefore, the new $G B=32 \mathrm{MHz}$ compared with the old $G B=10 \mathrm{MHz}$.

Conclusion for Increasing the $\boldsymbol{G B}$ of $\mathbf{O p}$ Amps
Maximum GB depends on the input transconductance and the capacitance that causes the dominant pole.

Quantity	MOSFET Op Amp	BJT Op Amp
g_{m} dependence	$\sqrt{2 \mathrm{~K}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{L}}\right) \mathrm{I}_{\mathrm{D}}}$	$\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{kT} / \mathrm{q}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{t}}}$ Maximum g_{m} $\approx 1 \mathrm{~mA} / \mathrm{V}$ GB for 10 pF GB for 1 pF 15 MHz 150 MHz 300 mHz $\mathrm{m}^{20 \mathrm{GHz}}$

Note that the power dissipation will be large for large $G B$ because current is needed for large g_{m}.
Assumption:
All higher-order roots are above $G B$.
The larger $G B$, the more difficult this becomes.
Conclusion:

- The best CMOS op amps have a $G B$ of $10-50 \mathrm{MHz}$
- The best BJT op amps have a $G B$ of $100-200 \mathrm{MHz}$

Switched Amplifiers

Switched amplifiers are time varying circuits that yield circuits with smaller parasitic capacitors and therefore higher frequency response. Such circuits are called dynamically biased.

- Switched amplifiers require a nonoverlapping clock
- Switched amplifiers only work during a portion of a clock period
- Bias conditions are setup on one clock phase and then maintained by capacitance on the active phase
- Switched amplifiers use switches and capacitors resulting in feedthrough problems
- Simplified circuits on the active phase minimize the parasitics

Typical clock:

Fig. 7.2-3B

Dynamically Biased Inverting Amplifier

During phase 1 the offset and bias of the inverter is sampled and applied to $C_{O S}$ and C_{B}. During phase $2 C_{O S}$ is connected in series with the input and provides offset canceling plus bias for M1. C_{B} provides the bias for M2.
(This circuit illustrates the concept of switched amplifiers but is too simple to illustrate the reduction of bias parasitics.)

Dynamically Biased, Push-Pull, Cascode Op Amp

Push-pull, cascode amplifier: M1-M2 and M3-M4
Bias circuitry: M5-M6- C_{2} and M7-M8- C_{1}
Parasitics can be further reduced by using a double-poly process to eliminate bulk-drain and bulk-source capacitances at the drain of M1-source of M2 and drain of M4-source of M3 (see Fig. 6.5-5).

Dynamically Biased, Push-Pull, Cascode Op Amp - Continued

Operation:

Equivalent circuit during the ϕ_{1} clock period

Dynamically Biased, Push-Pull, Cascode Op Amp - Continued
This circuit will operate on both clock phases ${ }^{\dagger}$.

Performance ($1.5 \mu \mathrm{~m}$ CMOS):

- 1.6 mW dissipation
- $G B \approx 130 \mathrm{MHz}\left(C_{L}=2.2 \mathrm{pF}\right)$
- Settling time of $10 \mathrm{~ns}\left(C_{L}=10 \mathrm{pF}\right)$

This amplifier was used with a 28.6 MHz clock to realize a 5thorder switched capacitor filter having a cutoff frequency of 3.5 MHz .

[^0]
Current Feedback Op Amps

Why current feedback:

- Higher GB
- Less voltage swing \Rightarrow more dynamic range

What is a current amplifier?

Fig. 7.2-8A
Requirements:

$$
\begin{aligned}
& i_{o}=A_{i}\left(i_{1}-i_{2}\right) \\
& R_{i 1}=R_{i 2}=0 \Omega \\
& R_{O}=\infty
\end{aligned}
$$

Ideal source and load requirements:

$$
\begin{aligned}
& R_{\text {source }}=\infty \\
& R_{\text {Load }}=0 \Omega
\end{aligned}
$$

Bandwidth Advantage of a Current Feedback Amplifier

Consider the inverting voltage amplifier shown using a current amplifier with negative current feedback:

The output current, i_{o}, of the current amplifier can be written as

$$
i_{o}=A_{i}(s)\left(i_{1}-i_{2}\right)=-A_{i}(s)\left(i_{i n}+i_{o}\right)
$$

The closed-loop current gain, $i_{d} / i_{i n}$, can be
 found as

$$
\frac{i_{o}}{i_{\text {in }}}=\frac{-A_{i}(s)}{1+A_{i}(s)}
$$

However, $v_{\text {out }}=i_{o} R_{2}$ and $v_{\text {in }}=i_{i n} R_{1}$. Solving for the voltage gain, $v_{\text {out }} / v_{\text {in }}$ gives

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{i_{o} R_{2}}{i_{i n} R_{1}}=\left(\frac{-R_{2}}{R_{1}}\right)\left(\frac{A_{i}(s)}{1+A_{i}(s)}\right)
$$

If $A_{i}(s)=\frac{A_{O}}{\frac{s}{\omega_{A}}+1}$, then

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{-R_{2}}{R_{1}}\right)\left(\frac{A_{o}}{1+A_{o}}\right)\left(\frac{\omega_{A}\left(1+A_{o}\right)}{s+\omega_{A}\left(1+A_{o}\right)}\right) \quad \Rightarrow \quad A_{v}(0)=\frac{-R_{2} A_{o}}{R_{1}\left(1+A_{o}\right)} \quad \text { and } \quad \omega_{-3 \mathrm{~dB}}=\omega_{A}\left(1+A_{o}\right)
$$

Bandwidth Advantage of a Current Feedback Amplifier - Continued

The unity-gainbandwidth is,

$$
G B=\left|A_{\nu}(0)\right| \omega_{-3 \mathrm{~dB}}=\frac{R_{2} A_{o}}{R_{1}\left(1+A_{o}\right)} \cdot \omega_{A}\left(1+A_{o}\right)=\frac{R_{2}}{R_{1}} A_{o} \cdot \omega_{A}=\frac{R_{2}}{R_{1}} G B_{i}
$$

where $G B_{i}$ is the unity-gainbandwidth of the current amplifier.
Note that if $G B_{i}$ is constant, then increasing R_{2} / R_{1} (the voltage gain) increases $G B$. Illustration:

Note that $G B_{2}>G B_{1}>G B_{i}$
The above illustration assumes that the $G B$ of the voltage amplifier realizing the voltage buffer is greater than the $G B$ achieved from the above method.

A Simple Current Mirror Implementation of a High Frequency Amplifier

Since the gain of the current amplifier does not need to be large, consider a unity-gain current mirror implementation:

An inverting amplifier with a gain of 10 is achieved if $R_{2}=20 R_{1}$ assuming the gain of the current mirror is unity.
What is the $G B$ of this amplifier?

$$
G B=\left|A_{v}(0)\right| \omega_{-3 \mathrm{~dB}}=\frac{R_{2} A_{o}}{R_{1}\left(1+A_{o}\right)} \cdot \frac{1}{R_{2} C_{o}}=\frac{A_{o}}{\left(1+A_{o}\right) R_{1} C_{o}}=\frac{1}{2 R_{1} C_{o}}
$$

where C_{O} is the capacitance seen at the output of the current mirror.
If $R_{1}=10 \mathrm{k} \Omega$ and $C_{o}=250 \mathrm{fF}$, then $G B=31.83 \mathrm{MHz}$.
Limitations:

$$
R_{1}>R_{i n}=1 / g_{m 1} \quad \text { and } R_{2}<r_{d s 2} \| r_{d s 6} \quad \Rightarrow \quad \frac{R_{2}}{R_{1}} \ll g_{m 1}\left(r_{d s 2} \| r_{d s 6}\right)
$$

A Wide-Swing, Cascode Current Mirror Implementation of a High Frequency Amplifier

The current mirror shown below increases the value of R_{2} by increasing the output resistance of the current mirror.

New limitations:
$R_{1}>\frac{1}{g_{m 1}}$ and $R_{2}<g_{m 4} r_{d s} 4 r_{d s 2} \|^{2} g_{m 6} r_{d s 6} r_{d s} 8 \Rightarrow \frac{R_{2}}{R_{1}} \ll g_{m 1}\left(g_{m 4} r_{d s 4} r_{d s 2} \| g_{m 6} r_{d s 6} r_{d s 8}\right)$

Example 7.2-3 - Design of a High GB Voltage Amplifier using Current Feedback

Design the wide-swing, cascode voltage amplifier to achieve a gain of $-10 \mathrm{~V} / \mathrm{V}$ and a $G B$ of 500 MHz which corresponds to a -3 dB frequency of 50 MHz .

Solution

Since we know what the gain is to be, let us begin by assuming that C_{o} will be 100 fF . Thus to get a $G B$ of $500 \mathrm{MHz}, R_{1}$ must be $3.2 \mathrm{k} \Omega$ and $R_{2}=32 \mathrm{k} \Omega$. Therefore, $1 / g_{m 1}$ must be less than 3200Ω (say 300Ω). Therefore we can write

$$
g_{m 1}=\sqrt{2 K I^{\prime}(W / L)}=\frac{1}{300 \Omega} \rightarrow 5.56 \times 10^{-6}=K^{\prime} \cdot I \cdot \frac{W}{L} \quad \rightarrow \quad 0.0505=I \cdot \frac{W}{L}
$$

At this point we have a problem because if W / L is small to minimize C_{o}, the current will be too high. If we select $W / L=200 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ we will get a current of 0.25 mA . However, using this W / L for M4 and M6 will give a value of C_{o} that is greater than 100fF.
Therefore, select $W / L=200$ for M1, M3, M5 and M7 and $W / L=20 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ for M2, M4, M6, and M8 which gives a current in these transistors of $25 \mu \mathrm{~A}$.
Since R_{2} / R_{1} is multiplied by $1 / 11$ let R_{2} be 110 times R_{1} or $352 \mathrm{k} \Omega$.
Now select a W / L for M12 of $20 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ which will now permit us to calculate C_{o}. We will assume zero-bias on all voltage dependent capacitors. Furthermore, we will assume the diffusion area as $2 \mu \mathrm{~m}$ times the $W . C_{o}$ can be written as

$$
C_{o}=C_{g d 4}+C_{b d 4}+C_{g d 6}+C_{b d 6}+C_{g s 12}
$$

Example 7.2-3 - Design of a High GB Voltage Amplifier using Current Feedback Cont'd

The information required to calculate these capacitors is found from Table 3.2-1. The various capacitors are,

$$
\begin{aligned}
C_{g d 4} & =C_{g d 6}=C G D O \times 10 \mu \mathrm{~m}=\left(220 \times 10^{-12}\right)\left(20 \times 10^{-6}\right)=4.4 \mathrm{fF} \\
C_{b d 4} & =C J \mathrm{AD} 4+C J S W \times \mathrm{PD}_{4}=\left(770 \times 10^{-6}\right)\left(20 \times 10^{-12}\right)+\left(380 \times 10^{-12}\right)\left(44 \times 10^{-6}\right) \\
& =15.4 \mathrm{fF}+16.7 \mathrm{fF}=32.1 \mathrm{fF} \\
C_{b d 6} & =\left(560 \times 10^{-6}\right)\left(20 \times 10^{-12}\right)+\left(350 \times 10^{-12}\right)\left(44 \times 10^{-6}\right)=26.6 \mathrm{fF} \\
C_{g s 12} & =\left(220 \times 10^{-12}\right)\left(20 \times 10^{-6}\right)+(0.67)\left(20 \times 10^{-6} \cdot 10^{-6} \cdot 24.7 \times 10^{-4}\right)=37.3 \mathrm{fF}
\end{aligned}
$$

Therefore,

$$
C_{o}=4.4 \mathrm{fF}+32.1 \mathrm{fF}+4.4 \mathrm{fF}+26.6 \mathrm{fF}+37.3 \mathrm{fF}=105 \mathrm{fF}
$$

Note that if we had not reduced the W / L of M2, M4, M6, and M8 that C_{o} would have easily exceeded 100 fF . Since 105 fF is close to our original guess of 100 fF , let us keep the values of R_{1} and R_{2}. If this value was significantly different, then we would adjust the values of R_{1} and R_{2} so that the $G B$ is 500 MHz . One must also check to make sure that the input pole is greater than 500 MHz .

The design is completed by assuming that $I_{\text {Bias }}=100 \mu \mathrm{~A}$ and that the current in M9 through M12 be $100 \mu \mathrm{~A}$. Thus $W_{13} / L_{13}=W_{14} / L_{14}=20 \mu \mathrm{~m}, / 1 \mu \mathrm{~m}$ and W_{9} / L_{9} through W_{12} / L_{12} are $20 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$.

Example 7.2-3 - Continued

Simulation Results:

$$
f_{-3 \mathrm{~dB}} \approx 38 \mathrm{MHz} \quad G B \approx 300 \mathrm{MHz} \quad \text { Closed-loop gain }=18 \mathrm{~dB}
$$

(Loss of -2 dB is attributed to source follower and R_{1})
Note second pole at about 1 GHz . To get these results, it was necessary to bias the input at -1.7 VDC using $\pm 3 \mathrm{~V}$ power supplies.
If R_{1} is decreased to $1 \mathrm{k} \Omega$ results in:
Gain of $26.4 \mathrm{~dB}, f_{-3 \mathrm{~dB}}=32 \mathrm{MHz}$, and $G B=630 \mathrm{MHz}$

A 71 MHz Programmable Gain Amplifier using a Current Amplifier

The following circuit has been submitted for fabrication in $0.25 \mu \mathrm{~m}$ CMOS:

R_{1} and the current mirrors are used for gain variation. R_{2} is fixed.
Can cascade this amplifier for higher gains

$$
B W=B W_{i} \sqrt{2^{1 / n}-1} \quad \text { for } n=2, B W=0.64 B W_{i}
$$

Implementation of a 60 dB Gain, $500 \mathrm{MHz}-3 \mathrm{~dB}$ Frequency PGA

Simulation Results

Output voltage swing is 1.26 V for a 2.5 V power supply.
Voltage gain is 0 to 60 dB in 2 dB steps (gain error $= \pm 0.17 \mathrm{~dB}$)
Maximum $G B$ is 1.5 GHz
Total current: 3.6 mA

A 71 MHz CMOS Programmable Gain Amplifier ${ }^{\dagger}$

Uses 3 ac-coupled stages.
First stage ($0-20 \mathrm{~dB}$, common gate for matching and NF):

$R_{\text {in }}=330 \Omega$ to match source driving requirement
All current sinks are identical for the differential switches.
Dominant pole at 150 MHz .

[^1]
A 71 MHz PGA - Continued

Second stage (-10dB to 20dB):

Dominant pole is also at 150 MHz
For $V_{D D}=2.5 \mathrm{~V}$, at 60 dB gain, the total current is 2.6 mA
$I I P_{3} \approx+1 \mathrm{dBm}$

Parallel Path Op Amps

This type of op amp combines a high-gain, low-frequency path with a low-gain, highfrequency path.

Fig. 7.2-14

Comments:

- Op amp will be conditionally stable
- Compensation will be challenging

Multipath Nested Miller Compensation

Comments:

- All Miller capacitances must be around inverting stages
- Ensure that the RHP zeros generated by the Miller compensation are canceled
- Avoid pole-zero doublets which can introduce a slow time constant

[^2]Chapter 7 - Section $2(2 / 25 / 03)$

Illustration of Hybrid Nested Miller Compensation

(Note that this example is not multipath.)
Compensating Results:

1) $C_{m 1}$ pushes p_{4} to higher frequencies and p_{3} down to lower frequencies
2) $C_{m 2}$ pushes p_{2} to higher frequencies and p_{1} down to lower
 frequencies
3) $C_{m 3}$ pushes p_{3} to higher frequencies (feedback path) \& pulls p_{1} further to lower frequencies
Equations:

$$
G B \approx g_{m 1} / C_{m 3} \quad p_{2} \approx g_{m 2} / C_{m 3} \quad p_{3} \approx g_{m 3} C_{m 3} /\left(C_{m 1} C_{m 2}\right) \quad p_{4} \approx g_{m 4} / C_{L}
$$

Design:

$$
G B<p_{2}, p_{3}, p_{4}
$$

Illustration of the Hybrid Nested Miller Compensation Technique

SUMMARY

- Normal op amps limited by g_{m} / C
- Typical limit for CMOS op amp is $G B \approx 50 \mathrm{MHz}$
- Other approaches to high frequency CMOS op amps:

Current amplifiers (Transimpedance amplifiers)
Switched amplifier (simplifies the circuit \Rightarrow reduce capacitances)
Parallel path op amps (compensation becomes more complex)

- What does the future hold?

Reduction of channel lengths mean:

* Reduced capacitances \Rightarrow Higher $G B$'s
* Higher transconductances (larger values of K^{\prime}) \Rightarrow Higher $G B^{\prime}$ s
* Increased channel conductance \Rightarrow Lower gains (more stages required)
* Reduction of power supply \Rightarrow Increased capacitances

In otherwords, there should be some improvement in op amp $G B$'s but it won't be inversely proportional to the decrease in channel length. I.e. maybe $G B ' s \approx 100 \mathrm{MHz}$ for $0.2 \mu \mathrm{~m}$ CMOS.

SECTION 7.3 - DIFFERENTIAL OUTPUT OP AMPS

Objective

The objective of this presentation is:
1.) Design and analysis of differential output op amps
2.) Examine the problem of common mode stabilization

Outline

- Advantages and disadvantages of fully differential operation
- Six different differential output op amps
- Techniques of stabilizing the common mode output voltage
- Summary

Why Differential Output Op Amps?

- Cancellation of common mode signals including clock feedthrough
- Increased signal swing

Fig. 7.3-1

- Cancellation of even-order harmonics

Symbol:

Fig. 7.3-1A

Common Mode Output Voltage Stabilization

If the common mode gain not small, it may cause the common mode output voltage to be poorly defined.
Illustration:

Fig. 7.3-2

Two-Stage, Miller, Differential-In, Differential-Out Op Amp

Note that the upper ICMR is $V_{D D}-V_{S G P}+V_{T N}$

Output common mode range $(O C M R)=V_{D D^{+}} \mid V_{S S}-V_{S D P}($ sat $)-V_{D S N}($ sat $)$
The maximum peak-to-peak output voltage $\leq 2 \cdot O C M R$
Conversion between differential outputs and single-ended outputs:

Differential-Output, Folded-Cascode, Class-A Op Amp

Fig. 7.3-5

$$
O C M R=V_{D D}+\mid V_{S S^{\prime}}-2 V_{S D P}(\text { sat })-2 V_{D S N}(\text { sat })
$$

Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Push-Pull Output

Comments:

- Able to actively source and sink output current
- Output quiescent current poorly defined

Two-Stage, Differential Output, Folded-Cascode Op Amp

Note that the followers M11-M13 and M10-M12 are necessary for level translation to the output stage.

Unfolded Cascode Op Amp with Differential-Outputs

Cross-Coupled Differential Amplifier Stage

One of the problems with some of the previous stages, is that the quiescent output current was not well defined.
The following input stage solves this problem.

Operation:

Voltage loop $v_{i 1}-v_{i 2}=-V_{G S 1}+v_{G S 1}+v_{S G 4}-V_{S G 4}=V_{S G 3}-v_{S G 3}-v_{G S 2}+V_{G S 2}$
Using the notation for ac, dc , and total variables gives,

$$
v_{i 2}-v_{i 1}=v_{i d}=\left(v_{s g 1}+v_{g s 4}\right)=-\left(v_{s g 3}+v_{g s 2}\right)
$$

If $\mathrm{M} 1=\mathrm{M} 2=\mathrm{M} 3=\mathrm{M} 4$, then half of the differential input is applied across each transistor with the correct polarity.

$$
\therefore \quad i_{1}=\frac{g_{m 1} v_{i d}}{2}=\frac{g_{m 4} v_{i d}}{2} \quad \text { and } \quad i_{2}=-\frac{g_{m 2} v_{i d}}{2}=-\frac{g_{m 3} v_{i d}}{2}
$$

Class AB, Differential Output Op Amp using a Cross-Coupled Differential Input Stage

Quiescent output currents are defined by the current in the input cross-coupled differential amplifier.

Common-Mode Output Voltage Stabilization

Model of output of differential output op amp

Fig. 7.3-11

Operation:

M1 and M2 sense the common-mode output voltage.
If this voltage rises, the currents in M1 and M2 decrease.
This decreased current flowing through $R_{o 3}$ and $R_{O 4}$ cause the common-mode output voltage to decrease with respect to $V_{S S}$.

Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Common-Mode Stabilization

Comments:

- Simple
- Unreferenced

A Referenced Common-Mode Output Voltage Stabilization Scheme

Operation:
1.) The desired common-mode output voltage, $V_{o c m}$, creates $I_{o c m}$.
2.) The actual common-mode output voltage creates current I_{5} which is mirrored to I_{6}.
3.) If M1 through M4 are matched and the current mirror is ideal, then when $I_{o c m}=I_{6}$ the actual common-mode output voltage should be equal to the desired commonmode output voltage.
4.) The above steps assume that a correction circuitry exists that changes the commonmode output voltage in the correct manner.

Common Mode Feedback Circuits

Implementation of common mode feedback circuit:

This scheme can be applied to any differential output amplifier.
Caution:
Be sure to check the stability of common-mode feedback loops, particularly those that are connected to op amps that have a cascode output. The gain of the common-mode feedback loop can easily reach that of a two-stage amplifier.

Common Mode Feedback Circuits - Continued

The previous circuit suffers when the input common mode voltage is low because the transistors MC2A and MC2B have a poor negative input common mode voltage.
The following circuit alleviates this disadvantage:

External Common-Mode Output Voltage Stabilization Scheme for Discrete-Time Applications

Operation:
1.) During the ϕ_{1} phase, both $C_{C m}$ are charged to the desired value of $V_{o c m}$ and CMbias $=V_{\text {ocm }}$.
2.) During the ϕ_{2} phase, the $C_{c m}$ capacitors are connected between the differential outputs and the CMbias node. The average value applied to the CMbias node will be $V_{\text {ocm }}$.

SUMMARY

- Advantages of differential output op amps:
- 6 dB increase in signal amplitude
- Cancellation of even harmonics
- Cancellation of common mode signals including clock feedthrough
- Disadvantages of differential output op amps:
- Need for common mode output voltage stabilization
- Compensation of common mode feedback loop
- Difficult to interface with single-ended circuits
- Most differential output op amps are truly balanced
- For push-pull outputs, the quiescent current should be well defined
- Common mode feedback schemes include,
- Unreferenced
- Referenced

SECTION 7.4 - LOW POWER OP AMPS

Objective

The objective of this presentation is:
1.) Examine op amps that have minimum static power

- Minimize power dissipation
- Work at low values of power supply
- Tradeoff speed for less power

Outline

- Weak inversion
- Methods of creating an overdrive
- Examples
- Summary

Subthreshold Operation

Most micropower op amps use transistors in the subthreshold region.
Subthreshold characteristics:

Operation with channel length $=L_{\min }$ also will normally be in weak inversion.

Two-Stage, Miller Op Amp Operating in Weak Inversion

Low frequency response:

$$
A_{v o}=g_{m 2} g_{m 6}\left(\frac{r_{o 2} r_{o 4}}{r_{o 2}+r_{o 4}}\right)\left(\frac{r_{o 6} r_{o 7}}{r_{o 6}+r_{o 7}}\right)=\frac{1}{n_{2} n_{6}(k T / q)^{2}\left(\lambda_{2}+\lambda_{4}\right)\left(\lambda_{6}+\lambda_{7}\right)} \quad\left(\text { No longer } \propto \frac{1}{\sqrt{I_{D}}}\right)
$$

$G B$ and $S R$:

$$
G B=\frac{I_{D 1}}{\left(n_{1} k T / q\right) C} \quad \text { and } \quad S R=\frac{I_{D 5}}{C}=2 \frac{I_{D 1}}{C}=2 G B\left(n_{1} \frac{k T}{q}\right)=2 G B n_{1} V_{t}
$$

Example 7.4-1 Gain and GB Calculations for Subthreshold Op Amp.

Calculate the gain, $G B$, and $S R$ of the op amp shown above. The currents are $I_{D 5}=$ 200 nA and $I_{D 7}=500 \mathrm{nA}$. The device lengths are $1 \mu \mathrm{~m}$. Values for n are 1.5 and 2.5 for p-channel and n-channel transistors respectively. The compensation capacitor is 5 pF . Use Table 3.1-2 as required. Assume that the temperature is $27^{\circ} \mathrm{C}$. If $V_{D D}=1.5 \mathrm{~V}$ and $V_{S S}=-1.5 \mathrm{~V}$, what is the power dissipation of this op amp?

Solution

The low-frequency small-signal gain is,

$$
A_{v}=\frac{1}{(1.5)(2.5)(0.026)^{2}(0.04+0.05)(0.04+0.05)}=43,701 \mathrm{~V} / \mathrm{V}
$$

The gain bandwidth is

$$
G B=\frac{100 \times 10-9}{2.5(0.026)(5 \times 10-12)}=307,690 \mathrm{rps} \cong 49.0 \mathrm{kHz}
$$

The slew rate is

$$
S R=(2)(307690)(2.5)(0.026)=0.04 \mathrm{~V} / \mu \mathrm{s}
$$

The power dissipation is,

$$
P_{\text {diss }}=3(0.7 \mu \mathrm{~A})=2.1 \mu \mathrm{~W}
$$

Push-Pull Output Op Amp in Weak Inversion

First stage gain is,

$$
A_{v o}=\frac{g_{m 2}}{g_{m 4}}=\frac{I_{D 2} n_{4} V_{t}}{I_{D 4} n_{2} V_{t}}=\frac{I_{D 2} n_{4}}{I_{D 4} n_{2}} \cong 1
$$

Total gain is,

$$
A_{v o}=\frac{g_{m 1}\left(\mathrm{~S}_{6} / \mathrm{S}_{4}\right)}{\left(g_{d s 6}+g_{d s 7}\right)}=\frac{\left(\mathrm{S}_{6} / \mathrm{S}_{4}\right)}{\left(\lambda_{6}+\lambda_{7}\right) n_{1} V_{t}}
$$

At room temperature ($V_{t}=0.0259 \mathrm{~V}$) and for typical device lengths, gains of 60 dB can be obtained.
The $G B$ is,

$$
G B=\frac{g_{m 1}}{\mathrm{C}}\left(\frac{\mathrm{~S}_{6}}{\mathrm{~S}_{4}}\right)=\frac{g_{m 1} b}{C}
$$

Increasing the Gain of the Previous Op Amp

1.) Can reduce the currents in M3 and M4 and introduce gain in the current mirrors.
2.) Use a cascode output stage (can't use self-biased cascode, currents are too low).

$$
\begin{aligned}
A_{v} & =\left(\frac{g_{m 1}+g_{m 2}}{2}\right) R_{\text {out }} \\
& =\frac{g_{m 1}}{\frac{g_{d s} 6 g_{d s 10}}{g_{m 10}}+\frac{g_{d s} 7 g_{d s 11}}{g_{m 11}}}
\end{aligned}
$$

$$
=\frac{\frac{I_{5}}{2 n_{n} V_{t}}}{\frac{I_{7}^{2} \lambda_{n}^{2}}{\frac{I_{7}}{n_{n} V_{t}}}+\frac{I_{7}^{2} \lambda_{p}^{2}}{\frac{I_{7}}{n_{p} V_{t}}}}=\left(\frac{I_{5}}{2 I_{7}}\right)\left(\frac{1}{n_{n} V_{t}^{2}\left(n_{n} \lambda_{n}^{2}+n_{p} \lambda_{p}^{2}\right)}\right)
$$

Can easily achieve gains greater than 80dB with power dissipation of less than $1 \mu \mathrm{~W}$.

Increasing the Output Current for Weak Inversion Operation

A significant disadvantage of the weak inversion is that very small currents are available to drive output capacitance so the slew rate becomes very small.
Dynamically biased differential amplifier input stage:

Note that the sinking current for M1 and M2 is
$I_{\text {sink }}=I_{5}+A\left(i_{2}-i_{1}\right)+A\left(i_{1}-i_{2}\right)$ where $\left(i_{2}-i_{1}\right)$ and $\left(i_{1}-i_{2}\right)$ are only positive or zero.
If $v_{i 1}>v_{i 2}$, then $i_{2}>i_{1}$ and the sinking current is increased by $A\left(i_{2}-i_{1}\right)$.
If $v_{i 2}>v_{i 1}$, then $i_{1}>i_{2}$ and the sinking current is increased by $A\left(i_{1}-i_{2}\right)$.

Dynamically Biased Differential Amplifier - Continued

How much output current is available from this circuit if there is no current gain from the input to output stage?
Assume transistors M18 through M21 are equal to M3 and M4 and that transistors M22 through M27 are all equal.
Let $\quad \frac{W_{28}}{L_{28}}=A\left(\frac{W_{26}}{L_{26}}\right) \quad$ and $\frac{W_{29}}{L_{29}}=A\left(\frac{W_{27}}{L_{27}}\right)$
The output current available can be found by assuming that $v_{i n}=v_{i 1}-v_{i 2}>0$.
$\therefore \quad i_{1}+i_{2}=I_{5}+A\left(i_{2}-i_{1}\right)$
The ratio of i_{2} to i_{1} can be expressed as

$$
\frac{i_{2}}{i_{1}}=\exp \left(\frac{v_{i n}}{n V_{t}}\right)
$$

Defining the output current as $i_{O U T}=b\left(i_{2}-i_{1}\right)$ and combining the above two equations gives,

$$
i_{O U T}=\frac{b I_{5}\left[\exp \left(\frac{v_{i n}}{n V_{t}}\right)-1\right]}{(1+A)-(A-1) \exp \left(\frac{v_{i n}}{n V_{t}}\right)} \quad \Rightarrow \quad i_{O U T}=\infty \text { when } A=2.16 \text { and } \frac{v_{i n}}{n V_{t}}=1
$$

where b corresponds to any current gain through current mirrors (M6-M4 and M8-M3).

Overdrive of the Dynamically Biased Differential Amplifier

The enhanced output current is accomplished by the use of positive feedback (M28-M2-M19-M28).
The loop gain is,

$$
L G=\left(\frac{g_{m 28}}{g_{m 4}}\right)\left(\frac{g_{m 19}}{g_{m 26}}\right)=A \frac{g_{m 19}}{g_{m 4}}=A
$$

Note that as the output current increases, the transistors leave the weak inversion region and the above analysis is no longer valid.

Increasing the Output Current for Strong Inversion Operation

An interesting technique is to bias the output transistor of a current mirror in the active region and then during large overdrive cause the output transistor to become saturated causing a significant current gain.
Illustration:

Fig. 7.4-6

Example 7.4-2 Current Mirror with M2 operating in the Active Region

Assume that M2 has a voltage across the drain-source of $0.1 V_{d s}($ sat $)$. Design the W_{2} / L_{2} ratio so that $I_{1}=I_{2}=100 \mu \mathrm{~A}$ if $W_{1} / L_{1}=10$. Find the value of I_{2} if M2 is saturated.

Solution

Using the parameters of Table 3.1-2, we find that the saturation voltage of M2 is

$$
V_{d s 1}(\mathrm{sat})=\sqrt{\frac{2 I_{1}}{K_{N}^{\prime}\left(W_{2} / L_{2}\right)}}=\sqrt{\frac{200}{110 \cdot 10}}=0.4264 \mathrm{~V}
$$

Now using the active equation of M2, we set $I_{2}=100 \mu \mathrm{~A}$ and solve for W_{2} / L_{2}.

$$
\begin{aligned}
& 100 \mu \mathrm{~A}=K_{N}{ }^{\prime}\left(W_{2} / L_{2}\right)\left[V_{d s 1}(\mathrm{sat}) \cdot V_{d s 2}-0.5 V_{d s 2^{2}}\right] \\
& \quad=110 \mu \mathrm{~A} / \mathrm{V}^{2}\left(W_{2} / L_{2}\right)[0.426 \cdot 0.0426-0.5 \cdot 0.04262] \mathrm{V}^{2}=1.883 \times 106\left(W_{2} / L_{2}\right)
\end{aligned}
$$

Thus,

$$
100=1.883\left(W_{2} / L_{2}\right) \quad \rightarrow \frac{W_{2}}{L_{2}}=53.12
$$

Now if M2 should become saturated, the value of the output current of the mirror with $100 \mu \mathrm{~A}$ input would be $531 \mu \mathrm{~A}$ or a boosting of 5.31 times I_{1}.

Implementation of the Current Mirror Boosting Concept

$k=$ overdrive factor of the current mirror

A Better Way to Achieve the Current Mirror Boosting

It was found that when the current mirror boosting idea illustrated on the previous slide was used that when the current increased through the cascode device (M16) that $V_{G S 16}$ increased limiting the increase of $V_{D S 12}$. This can be overcome by the following circuit.

Fig. 7.4-7A

SUMMARY

- Operation of transistors is generally in weak inversion
- Boosting techniques are needed to get output sourcing and sinking currents that are larger than that available during quiescent operation
- Be careful about using circuits at weak inversion, i.e. the self-biased cascode will cause the resistor to be too large

SECTION 7.5 - LOW NOISE OP AMPS

Objective

The objective of this presentation is:
1.) Review the principles of low noise design
2.) Show how to reduce the noise of op amps

Outline

- Review of noise analysis
- Low noise op amps
- Low noise op amps using lateral BJTs
- Low noise op amps using doubly correlated sampling
- Summary

Introduction

Why do we need low noise op amps?
Dynamic range:
Signal-to-noise ratio (SNR)

$$
=\frac{\text { Maximum RMS Signal }}{\text { Noise }}
$$

Dynamic Range $=6 \mathrm{dBx}$ (Number. of bits)

Fig. 7.5-0B
(SNDR includes both noise and distortion)
Consider a 14 bit digital-to-analog converter with a 1 V reference with a bandwidth of 1MHz.

Maximum RMS signal is $\frac{0.5 \mathrm{~V}}{\sqrt{2}}=0.3535 \mathrm{Vrms}$
A 14 bit D/A converter requires $14 \times 6 \mathrm{~dB}$ dynamic range or 84 dB or 16,400 .
$\therefore \quad$ The value of the least significant bit $(L S B)=\frac{0.3535}{16,400}=21.6 \mu \mathrm{Vrms}$
If the equivalent input noise of the op amp is not less than this value, then the $L S B$ cannot be resolved and the D/A converter will be in error. An op amp with an equivalent input-noise spectral density of $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ will have an rms noise voltage of approximately $(10 \mathrm{nV} / \sqrt{\mathrm{Hz}})(1000 \sqrt{\mathrm{~Hz}})=10 \mu \mathrm{Vrms}$ in a 1 MHz bandwidth.

Transistor Noise Sources (Low-Frequency)

Drain current model:

$$
i_{n}^{2}=\left[\frac{8 k T g_{m}}{3}+\frac{(K F) I_{D}}{f C_{o x} L^{2}}\right]
$$

or
Fig. $7.5-0 \mathrm{~A}$

Recall that $\eta=\frac{g_{m b s}}{g_{m}}$
Gate voltage model assuming common source operation:

$e_{n}^{2}=\frac{\bar{i}_{N}^{2}}{g_{m}^{2}}=\left[\frac{8 k T}{3 g_{m}}+\frac{K F}{2 f C_{o x} W L K^{\prime}}\right]$

Fig. 7.5-0C

Minimization of Noise in Op Amps

1.) Maximize the signal gain as close to the input as possible. (As a consequence, only the input stage will contribute to the noise of the op amp.)
2.) To minimize the $1 / \mathrm{f}$ noise:
a.) Use PMOS input transistors with appropriately selected dc currents and W and L values.
b.) Use lateral BJTs to eliminate the $1 / f$ noise.
c.) Use chopper stabilization to reduce the low-frequency noise.

Noise Analysis

1.) Insert a noise generator for each transistor that contributes to the noise. (Generally ignore the current source transistor of source-coupled pairs.)
2.) Find the output noise voltage across an open-circuit or output noise current into a short circuit.
3.) Reflect the total output noise back to the input resulting in the equivalent input noise voltage.

A Low-Noise, Two-Stage, Miller Op Amp

The total output-noise voltage spectral density, $e_{t o}^{2}$, is as follows where $g_{m 8}(\mathrm{eff}) \approx 1 / r_{d s 1}$,

$$
e_{t o}^{2}=g_{m 6} 2^{2} R_{I I}\left[e_{n 6}^{2}+e_{n 7}^{2}+R_{t}^{2}\left(g_{m 1^{2}} e_{n 1}^{2}+g_{m 2} e_{n 2}^{2}+g_{m 3} 2 e_{n 3}^{2}+g_{m 4}{ }^{2} e_{n 4}^{2}+\left(e_{n 8}^{2} / r_{d s 1^{2}}^{2}\right)+\left(e_{n 9}^{2} / r_{d s 2^{2}}^{2}\right)\right)\right]
$$

Divide by $\left(g_{m 1} R_{I} g_{m 6} R_{I I}\right)^{2}$ to get the eq. input-noise voltage spectral density, $e_{e q}^{2}$, as
where $e_{n 6}^{2}=e_{n 7}^{2}, e_{n 3}^{2}=e_{n 4}^{2}, e_{n 1}^{2}=e_{n 2}^{2}$ and $e_{n 8}^{2}=e_{n 9}^{2}$ and $g_{m 1} R_{I}$ is large.

1/f Noise of a Two-Stage, Miller Op Amp

Consider the 1 /f noise:
Therefore the noise generators are replaced by,

$$
e_{n i}^{2}=\frac{B}{f W_{i} L_{i}} \quad\left(\mathrm{~V}^{2} / \mathrm{Hz}\right) \quad \text { and } \quad i_{n i}^{2}=\frac{2 B K^{\prime} I_{i}}{f L_{i}^{2}} \quad\left(\mathrm{~A}^{2} / \mathrm{Hz}\right)
$$

Therefore, the approximate equivalent input-noise voltage spectral density is,

$$
e_{e q}^{2}=2 e_{n 1}^{2}\left[1+\left(\frac{K_{N} B_{N}}{K_{P} B_{P}}\right)\left(\frac{L_{1}}{L_{3}}\right)^{2}\right]\left(\mathrm{V}^{2} / \mathrm{Hz}\right)
$$

Comments;

- Because we have selected PMOS input transistors, $e_{n 1}^{2}$ has been minimized if we choose $W_{1} L_{1}\left(W_{2} L_{2}\right)$ large.
- Make $L_{1} \ll L_{3}$ to remove the influence of the second term in the brackets.

Thermal Noise of a Two-Stage, Miller Op Amp

Let us focus next on the thermal noise:
The noise generators are replaced by,

$$
e_{n i}^{2} \approx \frac{8 k T}{3 g_{m}} \quad\left(\mathrm{~V}^{2} / \mathrm{Hz}\right) \quad \text { and } \quad i_{n i}^{2} \approx \frac{8 k T g_{m}}{3} \quad\left(\mathrm{~A}^{2} / \mathrm{Hz}\right)
$$

where the influence of the bulk has been ignored.
The approximate equivalent input-noise voltage spectral density is,

$$
e_{e q}^{2}=2 e_{n 1}^{2}\left[1+\left(\frac{g_{m 3}}{g_{m 1}}\right)\left(2\left(\frac{e_{n 3}^{2}}{e_{n 1}}\right)\right]=2 e_{n 1}^{2}\left[1+\sqrt{\frac{K_{N} W_{3} L_{1}}{K_{P} W_{1} L_{3}}}\right](\mathrm{V} 2 / \mathrm{Hz})\right.
$$

Comments:

- The choices that reduce the $1 / f$ noise also reduce the thermal noise.

Noise Corner:

Equating the equivalent input-noise voltage spectral density for the $1 / f$ noise and the thermal noise gives the noise corner, $f_{\mathcal{C}}$, as

$$
f_{c}=\frac{3 g_{m} B}{8 k T W L}
$$

Example 7.5-1 Design of A Two-Stage, Miller Op Amp for Low $1 / f$ Noise

Use the parameters of Table 3.1-2 along with the value of $K F=4 \times 10^{-28} \mathrm{~F} \cdot \mathrm{~A}$ for NMOS and $0.5 \times 10^{-28} \mathrm{~F}$.A for PMOS and design the previous op amp to minimize the $1 / \mathrm{f}$ noise. Calculate the corresponding thermal noise and solve for the noise corner frequency. From this information, estimate the rms noise in a frequency range of 1 Hz to 100 kHz . What is the dynamic range of this op amp if the maximum signal is a 1 V peak-to-peak sinusoid?

Solution

1.) The $1 / \mathrm{f}$ noise constants, B_{N} and B_{P} are calculated as follows.

$$
B_{N}=\frac{K F}{2 C_{o x} K_{N}{ }^{'}}=\frac{4 \times 10^{-28} \mathrm{~F} \cdot \mathrm{~A}}{2 \cdot 24.7 \times 10^{-4} \mathrm{~F} / \mathrm{m}^{2} \cdot 110 \times 10^{-6} \mathrm{~A}^{2} / \mathrm{V}}=7.36 \times 10^{-22}(\mathrm{~V} \cdot \mathrm{~m})^{2}
$$

and

$$
B_{P}=\frac{K F}{2 C_{o x} K_{P}}=\frac{0.5 \times 10^{-28} \mathrm{~F} \cdot \mathrm{~A}}{2 \cdot 24.7 \times 10^{-4} \mathrm{~F} / \mathrm{m}^{2} \cdot 50 \times 10^{-6} \mathrm{~A}^{2} / \mathrm{V}}=2.02 \times 10^{-22}(\mathrm{~V} \cdot \mathrm{~m})^{2}
$$

2.) Now select the geometry of the various transistors that influence the noise performance.

To keep $e_{n 1}^{2}$ small, let $W_{1}=100 \mu \mathrm{~m}$ and $L_{1}=1 \mu \mathrm{~m}$. Select $W_{3}=100 \mu \mathrm{~m}$ and $L_{3}=$ $20 \mu \mathrm{~m}$ and let W_{8} and L_{8} be the same as W_{1} and L_{1} since they little influence on the noise.

Example 7.5-1 - Continued

Of course, M1 is matched with M2, M3 with M4, and M8 with M9.

$$
\begin{aligned}
\therefore \quad e_{n 1}^{2} & =\frac{B_{P}}{f W_{1} L_{1}}=\frac{2.02 \times 10^{-22}}{f \cdot 100 \mu \mathrm{~m} \cdot 1 \mu \mathrm{~m}}=\frac{2.02 \times 10^{-12}}{f}\left(\mathrm{~V}^{2} / \mathrm{Hz}\right) \\
e_{e q}^{2} & =2 \mathrm{x} \frac{2.02 \times 10^{-12}}{f}\left[1+\left(\frac{110 \cdot 7.36}{50 \cdot 2.02}\right)^{2}\left(\frac{1}{20}\right)^{2}\right]=\frac{4.04 \times 10^{-12}}{f} 1.1606=\frac{4.689 \times 10^{-12}}{f}\left(\mathrm{~V}^{2} / \mathrm{Hz}\right)
\end{aligned}
$$

Note at 100 Hz , the voltage noise in a 1 Hz band is $\approx 4.7 \times 10^{-14} \mathrm{~V}^{2}(\mathrm{rms})$ or $0.216 \mu \mathrm{~V}(\mathrm{rms})$.
3.) The thermal noise at room temperature is

$$
e_{n 1}^{2}=\frac{8 k T}{3 g_{m}}=\frac{8 \cdot 1.38 \times 10^{-23.300}}{3.707 \times 10^{-6}}=1.562 \times 10^{-17}(\mathrm{~V} 2 / \mathrm{Hz})
$$

which gives

$$
e_{e q}^{2}=2 \cdot 1.562 \times 10^{-17}\left[1+\sqrt{\frac{110 \cdot 100 \cdot 1}{50 \cdot 100 \cdot 20}}\right]=3.124 \times 10^{-17} \cdot 1.33=4.164 \times 10^{-17}\left(\mathrm{~V}^{2} / \mathrm{Hz}\right)
$$

4.) The noise corner frequency is found by equating the two expressions for $e_{e q}^{2}$ to get

$$
f_{c}=\frac{4.689 \times 10^{-12}}{4.164 \times 10^{-17}}=112.6 \mathrm{kHz}
$$

This noise corner is indicative of the fact that the thermal noise is much less than the $1 / \mathrm{f}$ noise.

Example 7.5-1 - Continued

5.) To estimate the rms noise in the bandwidth from 1 Hz to $100,000 \mathrm{~Hz}$, we will ignore the thermal noise and consider only the $1 / \mathrm{f}$ noise. Performing the integration gives

$$
\begin{aligned}
V_{e q}(\mathrm{rms})^{2} & =\int_{1}^{10^{5}} \frac{4.689 \times 10^{-12}}{f} d f=4.689 \times 10^{-12}[\ln (100,000)-\ln (1)] \\
& =0.540 \times 10^{-10} \mathrm{Vrms}^{2}=7.34 \mu \mathrm{Vrms}
\end{aligned}
$$

The maximum signal in rms is 0.353 V . Dividing this by $7.34 \mu \mathrm{~V}$ gives 48,044 or 93.6 dB which is equivalent to about 15 bits of resolution.
6.) Note that the design of the remainder of the op amp will have little influence on the noise and is not included in this example.

Lateral BJT

Since the $1 / f$ noise is associated with current flowing at the surface of the channel, the lateral BJT offers a lower $1 / f$ noise input device because the majority of current flows beneath the surface.

Cross-section of a NPN lateral BJT.

Symbol.

Comments:

- Base of the BJT is the well
- Two collectors-one horizontal (desired) and one vertical (undesired)
- Collector efficiency is defined as $\frac{\text { Lateral collector current }}{\text { Total collector current }}$ and is $60-70 \%$
- Reverse biased collector-base acts like a photodetector and is often used for lightsensing purposes

Field-Aided Lateral BJT

Polysilicon gates are used to ensure that the region beneath the gate does not invert forcing all current flow away from the surface and further eliminating the $1 / f$ noise.

Cross-section of a field-aided NPN lateral BJT.

Symbol. Fig. 7.5-4

Physical Layout of a Lateral PNP Transistor

Low-Noise Op Amp using Lateral BJTT's at the Input

Experimental noise performance:

Summary of Experimental Performance for the Low-Noise Op Amp

Experimental Performance	Value
Circuit area $(1.2 \mu \mathrm{~m})$	$0.211 \mathrm{~mm}{ }^{2}$
Supply Voltages	$\pm 2.5 \mathrm{~V}$
Quiescent Current	2.1 mA
-3 dB frequency (at a gain of 20.8 dB$)$	11.1 MHz
e_{n} at 1 Hz	$23.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$e_{n}($ midband $)$	$3.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$f_{c}\left(e_{n}\right)$	55 Hz
i_{n} at 1 Hz	$5.2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
$i_{n}($ midband $)$	$0.73 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
$f_{c}\left(i_{n}\right)$	50 Hz
Input bias current	$1.68 \mu \mathrm{~A}$
Input offset current	14.0 nA
Input offset voltage	1.0 mV
CMRR(DC)	99.6 dB
PSRR+(DC)	67.6 dB
PSRR-(DC)	73.9 dB
Positive slew rate $(60 \mathrm{pF}, 10 \mathrm{k} \Omega$ load $)$	$39.0 \mathrm{~V} / \mu \mathrm{S}$
Negative slew rate $(60 \mathrm{pF}, 10 \mathrm{k} \Omega$ load $)$	$42.5 \mathrm{~V} / \mu \mathrm{S}$

Chopper-Stabilized Op Amps - Doubly Correlated Sampling (DCS)

Illustration of the use of chopper stabilization to remove the undesired signal, v_{u}, form the desired signal, $v_{i n}$.

Fig. 7.5-8

Chopper-Stabilized Amplifier

Circuit equivalent during ϕ_{1} phase:

Circuit equivalent during the ϕ_{2} phase:

Fig. 7.5-10

Experimental Noise Response of the Chopper-Stabilized Amplifier

Comments:

- The switches in the chopper-stabilized op amp introduce a thermal noise equal to $k T / C$ where k is Boltzmann's constant, T is absolute temperature and C are capacitors charged by the switches (parasitics in the case of the chopper-stabilized amplifier).
- Requires two-phase, non-overlapping clocks.
- Trade-off between the lowering of $1 / f$ noise and the introduction of the $k T / C$ noise.

SUMMARY

- Primary sources of noise for CMOS circuits is thermal and $1 / \mathrm{f}$
- Noise analysis:
1.) Insert a noise generator for each transistor that contributes to the noise. (Generally ignore the current source transistor of source-coupled pairs.)
2.) Find the output noise voltage across an open-circuit or output noise current into a short circuit.
3.) Reflect the total output noise back to the input resulting in the equivalent input noise voltage.
- Noise is reduced in op amps by making the input stage gain as large as possible and reducing the noise of this stage as much as possible.
- The input stage noise can be reduced by using lateral BJTs (particularily the $1 / \mathrm{f}$ noise)
- Doubly correlated sampling can transfer the noise at low frequencies to the clock frequency (this technique is used to achieve low input offset voltage op amps).

SECTION 7.6 - LOW VOLTAGE OP AMPS

Objective

The objective of this presentation is:
1.) How to design standard circuit blocks with reduced power supply voltage
2.) Introduce new methods of designing low voltage circuits

Outline

- Low voltage input stages
- Low voltage bias circuits
- Low voltage op amps
- Examples
- Summary

Introduction

While low voltage op amps can be easily designed in weak inversion, strong inversion leads to higher performance and is the focus of this section.
Semiconductor Industry Associates Roadmap for Power Supplies:

Threshold voltages will remain about 0.5 to 0.7 V in order to allow the MOSFET to be turned off.

Implications of Low-Voltage, Strong-Inversion Operation

- Reduced power supply means decreased dynamic range
- Nonlinearity will increase because the transistor is working close to $V_{D S}(s a t)$
- Large values of λ because the transistor is working close to $V_{D S}($ sat $)$
- Increased drain-bulk and source-bulk capacitances because they are less reverse biased.
- Large values of currents and W / L ratios to get high transconductance
- Small values of currents and large values of W / L will give small $V_{D S}($ sat $)$
- Severely reduced input common mode range
- Switches will require charge pumps

Approach

- Low voltage input stages with reasonable ICMR
- Low voltage bias and load circuits
- Low voltage op amps

Differential Amplifier with Current Source Loads

Minimum power supply $(I C M R=0)$:

$$
\begin{aligned}
& \quad V_{D D}(\mathrm{~min})=V_{S D 3}(\mathrm{sat})-V_{T 1}+V_{G S 1}+V_{D S 5}(\mathrm{sat}) \\
& =V_{S D 3}(\mathrm{sat})+V_{D S 1}(\mathrm{sat})+V_{D S 5}(\mathrm{sat})
\end{aligned}
$$

Input common-mode range:

$$
\begin{aligned}
& V_{i c m}(\text { upper })=V_{D D}-V_{S D 3}(\text { sat })+V_{T 1} \\
& V_{\text {icm }}(\text { lower })=V_{D S 5}(\text { sat })+V_{G S 1}
\end{aligned}
$$

Example:
If the threshold magnitudes are $0.7 \mathrm{~V}, V_{D D}=1.5 \mathrm{~V}$ and the saturation voltages are 0.3 V , then

$$
V_{i c m}(\text { upper })=1.5-0.3+0.7=1.9 \mathrm{~V} \quad \text { and } \quad V_{i c m}(\text { lower })=0.3+1.0=1.3 \mathrm{~V}
$$ giving an $I C M R$ of 0.6 V .

Increasing ICMR using Parallel Input Stages

Turn-on voltage for the n-channel input:

$$
V_{\text {onn }}=V_{D S N 5}(\mathrm{sat})+V_{G S N 1}
$$

Turn-on voltage for the p-channel input:

$$
V_{o n p}=V_{D D}-V_{S D P 5}(\mathrm{sat})-V_{S G P 1}
$$

The sum of $V_{\text {onn }}$ and $V_{\text {onp }}$ equals the minimum power supply.
Regions of operation:

$$
\begin{array}{ll}
V_{D D}>V_{i c m}>V_{o n p}:(\text { n-channel on and p-channel off }) & g_{m}(\mathrm{eq})=g_{m N} \\
V_{o n p} \geq V_{i c m} \geq V_{o n n}:(\mathrm{n} \text {-channel on and p-channel on) } & g_{m}(\mathrm{eq})=g_{m N}+g_{m P} \\
V_{o n n}>V_{i c m}>0:(\mathrm{n} \text {-channel off and p-channel on }) & g_{m}(\mathrm{eq})=g_{m P}
\end{array}
$$

where $g_{m}(\mathrm{eq})$ is the equivalent input transconductance of the above input stage, $g_{m N}$ is the input transconductance for the n-channel input and $g_{m P}$ is the input transconductance for the p -channel input.

Removing the Nonlinearity in Transconductances as a Function of ICMR
Increase the bias current in the differential amplifier that is on when the other differential amplifier is off.

Three regions of operation depending on the value of $V_{i c m}$:
1.) $V_{i c m}<V_{\text {onn }}$: n-channel diff. amp. off and p-channel on with $I_{p}=4 I_{b}$:

$$
g_{m}(\mathrm{eff})=\sqrt{\frac{K_{P}^{\prime} W_{P}}{L_{P}}} 2 \sqrt{I_{b}}
$$

2.) $V_{\text {onn }}<V_{\text {icm }}<V_{\text {onp }}$: both on with

Fig. 7.6-6 $I_{n}=I_{p}=I_{b}:$

$$
g_{m}(\mathrm{eff})=\sqrt{\frac{K_{N} W_{N}}{L_{N}}} \sqrt{I_{b}}+\sqrt{\frac{K_{P}^{\prime} W_{P}}{L_{P}}} \sqrt{I_{b}}
$$

3.) $V_{\text {icm }}>V_{\text {onp }}$: p-channel diff. amp. off and n-channel on with $I_{n}=4 I_{b}$:

$$
g_{m}(\text { eff })=\sqrt{\frac{K_{N} W_{N}}{L_{N}}} 2 \sqrt{I_{b}}
$$

How Does the Current Compensation Work?

Set $V_{B 1}=V_{\text {onn }}$ and $V_{B 2}=V_{\text {onp }}$.

Result:

The above techniques and many similar ones are good for power supply values down to about 1.5 V . Below than, different techniques must be used or the technology must be modified (natural devices).

Bulk-Driven MOSFET

A depletion device would permit large $I C M R$ even with very small power supply voltages because $V_{G S}$ is zero or negative.
When a MOSFET is driven from the bulk with the gate held constant, it acts like a depletion transistor.
Cross-section of an n-channel bulk-driven MOSFET:

Fig. 7.6-8
Large signal equation:

$$
i_{D}=\frac{K_{N}{ }^{\prime} W}{2 L}\left[V_{G S}-V_{T 0}-\gamma \sqrt{2\left|\phi_{F}\right|-v_{B S}}+\gamma \sqrt{2\left|\phi_{F}\right|}\right]^{2}
$$

Small-signal transconductance:

$$
g_{m b s}=\frac{\gamma \sqrt{\left(2 K_{N}{ }^{\prime} W / L\right) I_{D}}}{2 \sqrt{2 \mid \phi_{F} I-V_{B S}}}
$$

Bulk-Driven MOSFET - Continued

Transconductance characteristics:

Saturation: $V_{D S}>V_{B S}-V_{P}$ gives,

$$
\begin{aligned}
& V_{B S}=V_{P}+V_{O N} \\
& i_{D}=I_{D S S}\left(1-\frac{V_{B S}}{V_{P}}\right)^{2}
\end{aligned}
$$

Comments:

- $g_{m}($ bulk $)>g_{m}$ (gate) if $V_{B S}>0$
 (forward biased)
- Noise of both configurations are the same (any differences comes from the gate versus bulk noise)
- Bulk-driven MOSFET tends to be more linear at lower currents than the gate-driven MOSFET
- Very useful for generation of $I_{D S S}$ floating current sources.

Bulk-Driven, n-channel Differential Amplifier

What is the ICMR?

$$
V_{i c m}(\min)=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{B S 1}=V_{S S}+V_{D S 5}(\mathrm{sat})-\left|V_{P 1}\right|+V_{D S 1}(\mathrm{sat})
$$

Note that $V_{i c m}$ can be less than $V_{S S}$ if $\left|V_{P 1}\right|>V_{D S 5}($ sat $)+V_{D S 1}($ sat $)$

$$
V_{i c m}(\max)=?
$$

As $V_{i c m}$ increases, the current through M1 and M2 is constant so the source increases. However, the gate voltage stays constant so that $V_{G S 1}$ decreases. Since the current must remain constant through M1 and M2 because of M5, the bulksource voltage becomes less negative causing $V_{T N 1}$ to decrease and maintain the currents through M1 and M2 constant. If $V_{i c m}$ is increased sufficiently, the bulksource voltage will become positive. However, current does not start to flow until $V_{B S}$ is greater than 0.3 volts so the
 effective $V_{i c m}$ (max) is

$$
V_{i c m}(\max) \approx V_{D D}-V_{S D 3}(\mathrm{sat})-V_{D S 1}(\mathrm{sat})+V_{B S 1} .
$$

Illustration of the ICMR of the Bulk-Driven, Differential Amplifier

Comments:

- Effective $I C M R$ is from $V_{S S}$ to $V_{D D}-0.3 \mathrm{~V}$
- The transconductance of the input stage can vary as much as 100% over the ICMR which makes it very difficult to compensate

Low-Voltage Current Mirrors using the Bulk-Driven MOSFET

The biggest problem with current mirrors is the large minimum input voltage required for previously examined current mirrors.
If the bulk-driven MOSFET is biased with a current that exceeds $I_{D S S}$ then it is enhancement and can be used as a current mirror.

The cascode current mirror gives a minimum input voltage of less than 0.5 V for currents less than $100 \mu \mathrm{~A}$

Simple Current Mirror with Level Shifting

Since the drain can be V_{T} less than the gate, the drain could be biased to reduce the minimum input voltage as illustrated.

A Low-Voltage Current Mirror with Wide Input and Output Swings

The current mirror below requires a power supply of $V_{T}+3 V_{O N}$ and has a $V_{i n}(\mathrm{~min})=$ $V_{O N}$ and a $V_{\text {out }}(\mathrm{min})=2 V_{O N}$ (less for the regulated cascode output mirror).

Bandgap Topologies Compatible with Low Voltage Power Supply

Voltage-mode bandgap topology.

Voltage-current mode bañgap topology.
Fig. 7.6-14

Method of Generating Currents with VBE and PTAT Temperature Coefficients

$$
\begin{aligned}
& V_{\text {out } 1}=I_{P T A T} R_{2}=\left(\frac{V_{P T A T}}{R_{1}}\right) R_{2}=V_{P T A T} \frac{R_{2}}{R_{1}} \\
& V_{\text {out } 2}=I_{V B E} R_{4}=\left(\frac{V_{B E}}{R_{3}}\right) R_{4}=V_{B E} \frac{R_{4}}{R_{3}}
\end{aligned}
$$

Technique for Canceling the Bandgap Curvature

Circuit to generate nonlinear correction term, $I_{N L}$.

Illustration of the various currents.
Fig. 7.6-16

$$
I_{N L}=\left\{\begin{array}{cc}
0, & K_{2} I_{V B E}>K_{1} I_{P T A T} \\
K_{1} I_{P T A T} & -K_{2} I_{V B E},
\end{array} K_{2} I_{V B E}<K_{1} I_{P T A T}\right.
$$

The combination of the above concept with the previous slide yielded a curvaturecorrected bandgap reference of 0.596 V with a TC of $20 \mathrm{ppm} / \mathrm{C}^{\circ}$ from $-15 \mathrm{C}^{\circ}$ to $90 \mathrm{C}^{\circ}$ using a 1.1 V power supply. ${ }^{\dagger}$ In addition, the line regulation was $408 \mathrm{ppm} / \mathrm{V}$ for $1.2 \leq V_{D D} \leq 10 \mathrm{~V}$ and $2000 \mathrm{ppm} / \mathrm{V}$ for $1.1 \leq V_{D D} \leq 10 \mathrm{~V}$. The quiescent current was $14 \mu \mathrm{~A}$.

[^3] Circuits, vol. 33, no. 10, October 1998, pp. 1551-1554.

Low-Voltage Op Amp using Classical Techniques ($V_{D D} \geq 2 V_{T}$)

Clever use of classical techniques.
Balanced inputs.

Example 7.6-1 - Design of a Low-Voltage Op Amp using the Previous Topology

Use the parameters of Table 3.1-2 to design the op amp above to meet the specifications given below.

$$
\begin{array}{lll}
V_{D D}=2 \mathrm{~V} & V_{\text {icm }}(\max)=2.5 \mathrm{~V} & V_{\text {icm }}(\min)=1 \mathrm{~V} \\
V_{\text {out }}(\max)=1.75 \mathrm{~V} & V_{\text {out }}(\min)=0.5 \mathrm{~V} & G B=10 \mathrm{MHz}
\end{array}
$$

Slew rate $= \pm 10 \mathrm{~V} / \mu \mathrm{s}$ Phase margin $=60^{\circ}$ for $C_{L}=10 \mathrm{pF}$

Solution

Assuming the conditions for a two-stage op amp necessary to achieve 60° phase margin and that the RHP zero is at least $10 G B$ gives

$$
C_{c}=0.2 C_{L}=2 \mathrm{pF}
$$

The slew rate is directly related to the current in M5 and gives

$$
I_{5}=C_{c} \cdot S R=2 \times 10^{-12} \cdot 10^{7}=20 \mu \mathrm{~A}
$$

We also know the input transconductances from $G B$ and C_{C}. They are given as

$$
g_{m 1}=g_{m 2}=G B \cdot C_{c}=20 \pi \times 10^{6} \cdot 2 \times 10^{-12}=125.67 \mu \mathrm{~S}
$$

Knowing the current flow in M1 and M2 gives the W/L ratios as

$$
\frac{W_{1}}{L_{1}}=\frac{W_{2}}{L_{2}}=\frac{g_{m} 1^{2}}{2 K_{N}\left(I_{1} / 2\right)}=\frac{\left(125.67 \times 10^{-6}\right)^{2}}{2 \cdot 110 \times 10^{-6} \cdot 10 \times 10^{-6}}=7.18
$$

Example 7.6-1 - Continued

Next, we find the W/L of M5 that will satisfy $V_{i c m}(\mathrm{~min})$ specification.

$$
V_{i c m}(\min)=V_{D S 5}(\mathrm{sat})+V_{G S 1}(10 \mu \mathrm{~A})=1 \mathrm{~V}
$$

This gives

$$
\begin{aligned}
& V_{D S 5}(\text { sat })=1-\sqrt{\frac{2 \cdot 10}{110 \cdot 7.18}-0.75=1-0.159-0.75}=0.0909 \mathrm{~V} \\
\therefore & V_{D S 5}(\text { sat })=0.0909=\sqrt{\frac{2 \cdot I_{5}}{K_{N}\left(W_{5} / L_{5}\right)}} \rightarrow \frac{W_{5}}{L_{5}}=\frac{2 \cdot 20}{110 \cdot(0.0909)^{2}}=44
\end{aligned}
$$

The design of M3 and M 4 is accomplished from the upper input common mode voltage:

$$
V_{i c m}(\max)=V_{D D^{-}} V_{S D 3}(\mathrm{sat})+V_{T N}=2-V_{S D 3}(\mathrm{sat})+0.75=2.5 \mathrm{~V}
$$

Solving for $V_{S D 3}(\mathrm{sat})$ gives 0.25 V . Assume that the currents in M6 and M7 are $20 \mu \mathrm{~A}$.
This gives a current of $30 \mu \mathrm{~A}$ in M3 and M4. Knowing the current in M3 (M4) gives

$$
V_{S D 3}(\mathrm{sat}) \leq \sqrt{\frac{2 \cdot 30}{50 \cdot\left(W_{3} / L_{3}\right)}} \quad \rightarrow \quad \frac{W_{3}}{L_{3}}=\frac{W_{4}}{L_{4}} \geq \frac{2.30}{(0.25)^{2} \cdot 50}=19.2
$$

Next, using the $V_{S D}($ sat $)=V_{O N}$ of M3 and M4, design M10 through M12. Let us assume that $I_{10}=I_{5}=20 \mu \mathrm{~A}$ which gives $W_{10} / L_{10}=44 . R_{1}$ is designed as $R_{1}=$ $0.25 \mathrm{~V} / 20 \mu \mathrm{~A}=12.5 \mathrm{k} \Omega$. The W/L ratios of M11 and M12 can be expressed as

$$
\frac{W_{11}}{L_{11}}=\frac{W_{12}}{L_{12}}=\frac{2 \cdot I_{11}}{K_{P} \cdot \cdot V_{S D 11}(\mathrm{sat})^{2}}=\frac{2 \cdot 20}{50 \cdot(0.25)^{2}}=12.8
$$

Example 7.6-1 - Continued

Since the source-gate voltages and currents of M6 and M7 are the same as M11 and M12 then the W/L values are equal. Thus

$$
W_{6} / L_{6}=W_{7} / L_{7}=12.8
$$

M8 and M9 should be as small as possible to reduce the parasitic (mirror) pole. However, the voltage drop across M4, M6 and M8 must be less than the power supply. Using this to design the gate-source voltage of M8 gives

$$
V_{G S 8}=V_{D D}-2 V_{O N}=2 \mathrm{~V}-2 \cdot 0.25=1.5 \mathrm{~V}
$$

Thus,

$$
\frac{W_{8}}{L_{8}}=\frac{W_{9}}{L_{9}}=\frac{2 \cdot I_{8}}{K_{N} \cdot V_{D S 8}(\mathrm{sat})^{2}}=\frac{2 \cdot 30}{110 \cdot(0.75)^{2}}=0.97 \approx 1
$$

Because M8 and M9 are small, the mirror pole will be insignificant. The next poles of interest would be those at the sources of M6 and M7. Assuming the channel length is $1 \mu \mathrm{~m}$, these poles are given as

$$
p_{6} \approx \frac{g_{m 6}}{C_{G S 6}}=\frac{\sqrt{2 K_{P}^{\prime} \cdot\left(W_{6} / L_{6}\right) \cdot I_{6}}}{(2 / 3) \cdot W_{6} \cdot L_{6} \cdot C_{\mathrm{ox}}}=\frac{\sqrt{2 \cdot 50 \cdot 12.8 \cdot 20} \times 10^{-6}}{(2 / 3) \cdot 12.8 \cdot 1 \cdot 2.47 \times 10^{-15}}=7.59 \times 10^{9} \mathrm{rads} / \mathrm{sec}
$$

which is about 100 times greater than $G B$.
Finally, the W/L ratios of the second stage must be designed. We can either use the relationship for 60° phase margin of $g_{\mathrm{m} 14}=10 g_{\mathrm{m} 1}=1256.7 \mu \mathrm{~S}$ or consider proper mirroring between M9 and M14.

Example 7.6-1 - Continued

Substituting $1256.7 \mu \mathrm{~S}$ for $g_{m 14}$ and 0.5 V for $V_{D S 14}$ in $W / L=g_{m} /\left(K_{N} V_{D S}(\right.$ sat $\left.)\right)$ gives $W_{14} / L_{14}=22.85$ which gives $I_{14}=314 \mu \mathrm{~A}$. The W/L of M13 is designed by the necessary current ratio desired between the two transistors and is

$$
\frac{W_{13}}{L_{13}}=\frac{I_{13}}{I_{12}} I_{12}=\frac{314}{20} \cdot 12.8=201
$$

Now, check to make sure that the $V_{\text {out }}(\max)$ is satisfied. The saturation voltage of M13 is

$$
V_{S D 13}(\text { sat })=\sqrt{\frac{2 \cdot I_{13}}{K_{P}^{\prime}\left(W_{13} / L_{13}\right)}}=\sqrt{\frac{2 \cdot 314}{50 \cdot 201}}=0.25 \mathrm{~V}
$$

which exactly meets the specification. For proper mirroring, the W/L ratio of M14 is,

$$
\frac{W_{9}}{L_{9}}=\frac{I_{9}}{I_{14}} \frac{W_{14}}{L_{14}}=1.46
$$

Since W_{9} / L_{9} was selected as 1 , this is close enough.
The parameters are $g_{d s 7}=1 \mu \mathrm{~S}, g_{d s 8}=0.8 \mu \mathrm{~S}, g_{d s 13}=15.7 \mu \mathrm{~S}$ and $g_{d s 14}=12.56 \mu \mathrm{~S}$. Therefore small signal voltage gain is ($R_{I} \approx r_{d s 9}$ because M 7 is part of a cascode conf.)

$$
\frac{v_{\text {out }}}{v_{\text {in }}} \approx\left(\frac{g_{m 1}}{g_{d s 9}}\right)\left(\frac{g_{m 14}}{g_{d s 13}+g_{d s 14}}\right)=\left(\frac{125.6}{1.8}\right)\left(\frac{1256.7}{28.26}\right)=69.78 \cdot 44.47=3,103 \mathrm{~V} / \mathrm{V}
$$

The power dissipation, including $I_{\text {bias }}$ of $20 \mu \mathrm{~A}$, is $708 \mu \mathrm{~W}$.
The minimum power supply voltage is $V_{T}+3 \Delta V \approx 1.5 \mathrm{~V}$ if $V_{T}=0.7 \mathrm{~V}$ and $\Delta V \approx 0.25 \mathrm{~V}$.

A 1-Volt, Two-Stage Op Amp

Uses a bulk-driven differential input amplifier.

Performance of the 1-Volt, Two-Stage Op Amp

Specification $\left(V_{\left.D D^{\prime}=0.5 \mathrm{~V}, V_{S S}=-0.5 \mathrm{~V}\right)} \quad\right.$ Measured Performance $\left(C_{L}=22 \mathrm{pF}\right)$	
DC open-loop gain	$49 \mathrm{~dB}\left(V_{\text {icm }}\right.$ mid range $)$
Power supply current	$300 \mu \mathrm{~A}$
Unity-gainbandwidth $(G B)$	$1.3 \mathrm{MHz}\left(V_{\text {icm }}\right.$ mid range $)$
Phase margin	$57^{\circ}\left(V_{\text {icm }}\right.$ mid range $)$
Input offset voltage	$\pm 3 \mathrm{mV}$
Input common mode voltage range	-0.475 V to 0.450 V
Output swing	-0.475 V to 0.491 V
Positive slew rate	$+0.7 \mathrm{~V} / \mu \mathrm{sec}$
Negative slew rate	$-1.6 \mathrm{~V} / \mu \mathrm{sec}$
THD, closed loop gain of $-1 \mathrm{~V} / \mathrm{V}$	$-60 \mathrm{~dB}(0.75 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{kHz}$ sinewave $)$
	$-59 \mathrm{~dB}(0.75 \mathrm{Vp}-\mathrm{p}, 10 \mathrm{kHz}$ sinewave $)$
THD, closed loop gain of $+1 \mathrm{~V} / \mathrm{V}$	$-59 \mathrm{~dB}(0.75 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{kHz}$ sinewave $)$
	$-57 \mathrm{~dB}(0.75 \mathrm{Vp}-\mathrm{p}, 10 \mathrm{kHz}$ sinewave $)$
Spectral noise voltage density	$367 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}$
	$181 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 10 \mathrm{kHz}$,
	$81 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 100 \mathrm{kHz}$
	$444 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{MHz}$
Positive Power Supply Rejection	61 dB at $10 \mathrm{kHz}, 55 \mathrm{~dB}$ at $100 \mathrm{kHz}, 22 \mathrm{~dB}$ at 1 MHz
Negative Power Supply Rejection	45 dB at $10 \mathrm{kHz}, 27 \mathrm{~dB}$ at $100 \mathrm{kHz}, 5 \mathrm{~dB}$ at 1 MHz

Further Considerations of the using the Bulk - Current Driven Bulk ${ }^{\dagger}$

The bulk can be used to reduce the threshold sufficiently to permit low voltage applications. The key is to keep the substrate current confined.
One possible technique is:

Reduced Threshold MOSFET

Parasitic BJT

Problem:
Want to limit the BJT current to some value called, $I_{\max }$.
Therefore,

$$
I_{B B}=\frac{I_{\max }}{\beta_{C S}+\beta_{C D}+1}
$$

${ }^{\dagger}$ T. Lehmann and M. Cassia, "1V Power Supply CMOS Cascode Amplifier," IEEE J. of Solid-State Circuits, Vol. 36, No. 7, 2001

Current-Driven Bulk Technique - Continued
Bias circuit for keeping the $I_{\max }$ defined independent of BJT betas.

Note:

$$
\begin{aligned}
& I_{D, C}=I_{C D}+I_{D} \\
& I_{S, E}=I_{D}+I_{E}+I_{R}
\end{aligned}
$$

The circuit feedback causes a bulk bias current
 $I_{B B}$ and hence a bias voltage $V_{B I A S}$ such that

$$
I_{S, E}=I_{D}+I_{B B}\left(1+\beta_{C S}+\beta_{C D}\right)+I_{R} \text { regardless of the actual values of the } \beta \text { 's. }
$$

Use $V_{B i a s 1}$ and $V_{B i a s 2}$ to set $I_{D, C} \approx 1.1 I_{D}, I_{S, E} \approx 1.3 I_{D}$ and $I_{R} \approx 0.1 I_{D}$ which sets $I_{\max }$ at $0.1 I_{D}$.
For the circuit to work,
$V_{B E}<V_{T N}+I_{R} R$ and $\quad\left|V_{T P}\right|+V_{D S}($ sat $)<V_{T N}+I_{R} R$
If $\left|V_{T P}\right|>V_{T N}$, then the level shifter $I_{R} R$ can be eliminated.

A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique

Transistors with forward-biased bulks are in a shaded box.
For large common mode input changes, C_{x}, is necessary to avoid slewing in the input stage.
To get more voltage headroom at the output, the transistors of the cascode mirror have their bulks current driven.

A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique Continued

Experimental results:
$0.5 \mu \mathrm{~m}$ CMOS, $40 \mu \mathrm{~A}$ total bias current ($C_{x}=10 \mathrm{pF}$)

Supply Voltage	1.0 V	0.8 V	0.7 V
Common-mode input range	$0.0 \mathrm{~V}-0.65 \mathrm{~V}$	$0.0 \mathrm{~V}-0.4 \mathrm{~V}$	$0.0 \mathrm{~V}-0.3 \mathrm{~V}$
High gain output range	$0.35 \mathrm{~V}-$ 0.75 V	$0.25 \mathrm{~V}-0.5 \mathrm{~V}$	$0.2 \mathrm{~V}-0.4 \mathrm{~V}$
Output saturation limits	$0.1 \mathrm{~V}-0.9 \mathrm{~V}$	$0.15 \mathrm{~V}-$ 0.65 V	$0.1 \mathrm{~V}-0.6 \mathrm{~V}$
DC gain	$62 \mathrm{~dB}-69 \mathrm{~dB}$	$46 \mathrm{~dB}-53 \mathrm{~dB}$	$33 \mathrm{~dB}-36 \mathrm{~dB}$
Gain-Bandwidth	2.0 MHz	0.8 MHz	1.3 MHz
Slew-Rate $\left(C_{L}=20 \mathrm{pF}\right)$	$0.5 \mathrm{~V} / \mathrm{\mu s}$	$0.4 \mathrm{~V} / \mu \mathrm{s}$	$0.1 \mathrm{~V} / \mu \mathrm{s}$
Phase margin $\left(C_{L}=20 \mathrm{pF}\right)$	57°	54°	48°

The nominal value of bulk current is 10 nA gives a 10% increase in differential pair quiescent current assuming a BJT β of 100 .

SUMMARY

- Integrated circuit power supplies are rapidly decreasing (today 2-3Volts)
- Classical analog circuit design techniques begin to deteriorate at 1.5-2 Volts
- Approaches for lower voltage circuits:
- Use natural NMOS transistors ($V_{T} \approx 0.1 \mathrm{~V}$)
- Drive the bulk terminal
- Forward bias the bulk
- Use depeletion devices
- The dynamic range will be compressed if the noise is not also reduced
- Fortunately, the threshold reduction continues to allow the techniques of this section to be used in today's technology

CHAPTER 7 - SUMMARY

This chapter has considered improved op amp performance in the areas of:

- Op amps that can drive low output load resistances and large output capacitances
- Op amps with improved bandwidth
- Op amps with differential output
- Op amps having low power dissipation
- Op amps having low noise
- Op amps that can work at low voltages

The objective of this chapter has been to show how to improve the performance of an op amp.

- We found that improvements are always possible
- The key is to balance the tradeoffs against the particular performance improvement
- This chapter is an excellent example of the degrees of freedom and choices that different circuit architectures can offer.
We also illustrated further the approaches to designing op amps
The next chapter begins the transition from analog to digital with the introduction of the comparator.

[^0]: S. Masuda, et. al., "CMOS Sampled Differential Push-Pull Cascode Op Amp," Proc. of 1984 International Symposium on Circuits and Systems, Montreal, Canada, May 1984, pp. 1211-12-14.

[^1]: ${ }^{\dagger}$ P. Orsatti, F. Piazza, and Q. Huang, "A 71 MHz CMOS IF-Basdband Strip for GSM, IEEE JSSC, vol. 35, No. 1, Jan. 2000 , pp. 104-108.

[^2]: ${ }^{\dagger}$ R.G.H. Eschauzier and J.H.Huijsing, Frequency Compensation Techniques for Low-Power Operational Amplifiers, Kluwer Academic publishers, 1995, Chapter 6.
 CMOS Analog Circuit Design
 © P.E. Allen - 2003

[^3]: ${ }^{\dagger}$ G.A. Rincon-Mora and P.E. Allen, "A 1.1-V Current-Mode and Piecewise-Linear Curvature-Corrected Bandgap Reference," J. of Solid-State

