

Why not multiple t-tests?

- If you have 5 groups you end up with 10 ttests, too difficult to evaluate
- The greater the number of tests you make, the more likely you commit a type-I error (that is, you reject H₀ when you should accept it)
- There are methods to do pair wise tests that we'll discuss later

- we expect that the sample means will be different, question is, are they significantly different from each other?
- H₀: differences are not significant differences between sample means have been generated in a random sampling process
- H₁: differences are significant sample means likely to have come from different population means

General Form:	X = f(T)			I
Specific Form:	$X_{ij} = \mu + \tau_j + \varepsilon_{ij}$			
Verbal Form:	Price = f(Store	е Туре)	This example	shows
Music Store	Bookstore	Discount Store	that group si	zes can
18.95	14.95	11.50	be unequal.	
14.95	15.95	12.50		
15.95	21.95	9.50		
11.00	13.75	11.75		
17.00		13.75		
14.50				
13.00				

- deviation of the group mean from the overall mean is taken to represent the effect of belonging to a particular group
- deviation from the group mean is taken to represent the effect of all other variables other than the group variable

Example 1

consider the numbers below as constituting One data set

	obs	ervat	ions	$\frac{1}{x}$	
Sample 1	1		7	3	3.7
Sample 2	3	3	4		3.3
Sample 3	3	7	1	2	3.3

- as stated before, the variability in all observations can be divided into 3 parts
- 1) variations due to differences within rows
- 2) variations due to differences between rows
- 3) variations due to sampling errors

• •

Example 2

much of the variation is **between** each row, it is easy to tell if the means are significantly different [note: 1 way ANOVA does not need equal numbers of observations in each row]

	observa	\overline{x}			
Sample 1	1	1	1	2	1.25
Sample 2	3	3	4		3.33
Sample 3	7	7	8	7	7.25

• conclude there is a significant difference

	ot	os			\overline{x}		ot	s			<u>-</u>
S ₁	1		7	3	3.7	S ₁	1	1	1	2	1.25
S ₂	3	3	4		3.3	S ₂	3	3	4		3.33
S ₃	3	7	1	2	3.3	S ₃	7	7	8	7	7.25
5 3	3	1	1	2	3.3	3 ₃	/	1	0	/	7.25

F ratio

- having calculated 2 estimates of the population variance how probable is it that 2 values are estimates of the same population variance
- to answer this we use the statistic known as the F ratio

E ratio –	between row variation
1 1000-	within row variation

 $F ratio = \frac{estimate of variance between samples}{estimate of variance within samples}$

• since the calculations are somewhat complicated it should be done in a table

Example Test winning times for the men's Olympic 100 meter dash over several time periods								
	winning	X _k						
1900- 1912	10.8	11	10.8	10.8	10.8	5		
1920- 1932	10.8	10.6	10.8	10.3	10.6	25		
1936- 1956	10.3	10.3	10.4	10.5	10.3	75		

• Confidence at p=0.01, 99% confident from different population

1900-1912	1920-1932	1936-1956	
10.8	10.8	10.3	
11	10.6	10.3	
10.8	10.8	10.4	
10.8	10.3	10.5	X _G =0.62
∑x=43.4	∑x=42.5	∑x=41.5	
n=4	n=4	n=4	
<u>⊼</u> =10.85	<u></u> <i>x</i> =10.625	<u>⊼</u> =10.375	

1900-1912	1920-1932	1936-1956	1900-1912	1920-1932	1936-195
$(x-\overline{x})$	$(x-\overline{x})^2$	$(x-\overline{x})$	$(x-\overline{x})^2$	$(x-\overline{x})$	$(x-\overline{x})^2$
05	.175	075	.0025	.0306	.0056
.15	025	075	.0225	.0006	.0056
05	.175	.025	.0025	.0306	.0006
05	325	.125	.0025	.1056	.0156
$\Sigma(x-\overline{x})^2=.03$		$\sum (x - \overline{x})^2 = .$.1674	$\sum (x - \overline{x})^2 = $.0274

$$\sigma_w^2 = \frac{\sum_{i=1}^k \sum_{j=1}^n (x - \bar{x})^2}{N - k} = \frac{0.2248}{12 - 3} = 0.025$$

calculation of between samples variance estimate $\sigma_B^2 = \frac{\sum n(\bar{x} - \bar{x}_G)^2}{k-1} = \frac{0.2116 + 0 + 0.24}{3-1} = 0.2258$										
1900- 1912	X=10.85	n=4	n(X-X _G)	4(10.85-10.62) ²	4(.0529)	.2116				
1920- 1932	X=10.625	n=4	n(X-X _G)	4(10.625-10.62) ²	4(.0000)	0				
1936- 1956	X=10.375	n=4	n(X-X _G)	4(10.375-10.62) ²	4(.0600)	.24				

SST =	SSR +	SSE				I
1900- 1912	X2	1920- 1932	X ²	1936- 1956	X ²	
10.8	116.64	10.8	116.64	10.3	106.09	
11	121	10.6	112.36	10.3	106.09	
10.8	116.64	10.8	116.64	10.4	108.16	
10.8	116.64	10.3	106.09	10.5	110.25	
Totals	470.92		451.73		430.59	1353.2
otals	470.92		451.73		430.59	1353.2

$MSR = \frac{SSR}{k-1} = \frac{0.45}{3-1} = 0.225$	Ι
$MSE = \frac{SSE}{N-k} = \frac{0.23}{12-3} = 0.0255$	
$F = \frac{MSR}{MSE} = \frac{0.225}{0.0255} = 8.82$	
$df_1 = k - 1 = 2 \ df_2 = N - k = 12 - 3 = 9$	

Source of variation	df	sum of squares	mean square	F-statistic	
between rows/groups /samples	k-1 (2)	SSR (0.45)	SSR/k-1 (0.225)	MSR/N (8.82)	
within rows/groups /samples	N-k (9)	SSE (0.23)	SSE/N-k (0.0255)		
Total	N-1	0.68			

Nonnormality

- Do a histogram to check
- If sample size is small it may be difficult to detect
- If the samples are not seriously imbalanced in size skewness won't have much impact
- Do a normal Q-Q plot or normal quantile-quantile plot, it's a plot of the ordered data values (as Y) against the associated quantiles of the normal distribution (as X)

