

What Is ANOVA?

ANOVA = ANalysis Of VAriance
ANOVA compares the means of several groups. The groups are sometimes called "treatments"

One way ANOVA (the F ratio test)

- it is the standard parametric test of difference between 3 or more samples,
- it is the parametric equivalent of the KruskalWallis test
- $\mathrm{H}_{0}=\mu_{1}=\mu_{2}=\mu_{3}=\mu_{\mathrm{k}}$ the population means are all equal
- so that if just one is different, we will reject H_{0}

Why not multiple t-tests?

- If you have 5 groups you end up with 10 ttests, too difficult to evaluate
- The greater the number of tests you make, the more likely you commit a type-I error (that is, you reject H_{0} when you should accept it)
- There are methods to do pair wise tests that we'll discuss later

Some Terminology

- The ANOVA model specifies a single dependent variable (continuous)
- There will be one or more explanatory factors (categorical)
- Each factor has several levels (or groups) called treatments.

ANOVA reveals whether or not the mean depends on the treatment group from which an observation is taken.

- we expect that the sample means will be different, question is, are they significantly different from each other?
- H_{0} : differences are not significant differences between sample means have been generated in a random sampling process
- H_{1} : differences are significant - sample means likely to have come from different population means

Assumptions

- 1) data must be at the interval/ratio level
- 2) sample data must be drawn from a normally distributed population
- 3) sample data must be drawn from independent random samples

One Factor: DVD Price

Verbal Form: \quad Price $=f($ Store Type $)$

Music Store	Bookstore	Discount Store
18.95	14.95	11.50
14.95	15.95	12.50
15.95	21.95	9.50
11.00	13.75	11.75
17.00		13.75

14.50
$X=$ price of a recent DVD (continuous variable)
$T=$ store type (discrete -3 treatment levels)

- ANOVA examines differences in means by looking at estimates of variances
- essentially ANOVA poses the following partition of a data value
- observation=overall mean + deviation of group mean from overall mean + deviation of observation from group mean
- the overall mean is a constant to all observations

\section*{

 }

\qquad

Case example

Lower Variation,
Higher Quality
Ford and Mazda were pro-
ducing similar transmissions
that were supposed to be
made with the same specifi-
cations. But the American-
made transmissions
required more warranty
repairs than the Japanese-
made transmissions. When
investigators inspected sam-
ples of the Japanese trans-
mission gearboxes, they first
thought that their measuring
instruments were defective

Lower Variation, Higher Quality
Ford and Mazda were pro-
ducing similar transmissions
that were supposed to be
made with the same specitications. But the Ame
made transmissions required more warranty
made transmisions. When investigators inspected sammission gearboxes, they first thought that their measuring instruments were defective

Example 2

much of the variation is between each row, it is easy to tell if the means are significantly different
[note: 1 way ANOVA does not need equal numbers of observations in each row]

	observations				\bar{x}
Sample 1	1	1	1	2	1.25
Sample 2	3	3	4		3.33
Sample 3	7	7	8	7	7.25

- in example 1: between row variation is small compared to row variation, therefore F will be small
- large values of F indicate difference
- conclude there is no significant difference between means
- in example 2: between row variation is large compared to within row variation, therefore, F will be large
- conclude there is a significant difference

Sample 1 vs Sample 2

	obs				\bar{x}
$\mathrm{~S}_{1}$	1		7	3	3.7
$\mathrm{~S}_{2}$	3	3	4		3.3
$\mathrm{~S}_{3}$	3	7	1	2	3.3

	obs			
S_{1}	1	1	1	2
	1.25			
$\mathrm{~S}_{2}$	3	3	4	
$\mathrm{~S}_{3}$	7	7	8	7

within sample variance estimate

$$
\sigma_{w}^{2}=\frac{\sum_{i=1}^{k} \sum_{j=1}^{n}(x-\bar{x})^{2}}{N-k}
$$

[^0]
Between sample variance

$$
\sigma_{b}^{2}=\frac{\sum_{i=1}^{k} n\left(\bar{x}-\bar{x}_{G}\right)^{2}}{k-1}
$$

\bar{X}_{G} is the grand mean

- the first step in ANOVA is to make two estimates of the variance of the hypothesized common population
- 1) the within samples variance estimate
- 2) the between samples variance estimate

F ratio

- having calculated 2 estimates of the population variance how probable is it that 2 values are estimates of the same population variance
- to answer this we use the statistic known as the F ratio

$$
\begin{aligned}
& F \text { ratio }=\frac{\text { between row variation }}{\text { within row variation }} \\
& \text { F ratio }=\frac{\text { estimate of variance between samples }}{\text { estimate of variance within samples }}
\end{aligned}
$$

- significance: critical values are available from tables
- df are calculated as
- 1) for the between sample variance estimate they are the number of sample means minus 1 ($k-1$)
- 2) for the within sample variance they are the total number of individuals in the data minus the number of samples ($\mathrm{N}-\mathrm{k}$)
- since the calculations are somewhat complicated it should be done in a table

Hypotheses

- H_{0} : There is no significant difference in winning times. The difference in means have been generated in a random sampling process
- H_{1} : There are significant differences in winning times. Given observed differences in sample means, it is likely they have been drawn from different populations.
- Confidence at $\mathrm{p}=0.01,99 \%$ confident from different population

	variance estimate	df
between samples	.2258	$2(\mathrm{k}-1)$
within samples	.025	$9(\mathrm{~N}-\mathrm{k})$

- one problem in using these formulas,
however, is that if the means are approximated, the multiple subtractions compound rounding errors. To get around this, the formulas can rewritten as:

$$
T=\sum_{i=1}^{r} \sum_{j=1}^{k} x_{i j}
$$

[^1]| | |
| :--- | :--- |
| | |
| - one problem in using | |
| these formulas, | |
| however, is that if the | $T=\sum_{i=1}^{r} \sum_{j=1}^{k} x_{i j}$ |
| means are | |
| approximated, the | |
| multiple subtractions | |
| compound rounding | |
| errors. To get around | |
| this, the formulas can | |
| rewritten as: | |
| N=total number of observations
 Tis the total sum of observations | |

- SST	SSR +	SSE				
$\begin{aligned} & 1900- \\ & 1912 \end{aligned}$	X^{2}	$\begin{aligned} & \text { 1920- } \\ & 1932 \end{aligned}$	X^{2}	$\begin{array}{\|l} 1936- \\ 1956 \end{array}$	x^{2}	
10.8	116.64	10.8	116.64	10.3	106.09	
11	121	10.6	112.36	10.3	106.09	
10.8	116.64	10.8	116.64	10.4	108.16	
10.8	116.64	10.3	106.09	10.5	110.25	
Totals	470.92		451.73		430.59	1353.24

- Where:
$S S T=\sum\left(x_{i j}{ }^{2}\right)-\frac{1}{N} T^{2} \quad S S R=\sum \frac{T_{i}^{2}}{n_{i}}-\frac{1}{N} T^{2}$
$\mathrm{T}=$ sum of all observations
T_{i} is the sum of all the observations in a row

$S S R=\left[\sum_{i=1}^{k} \frac{T_{i}^{2}}{n_{i}}\right]-\frac{1}{N} T^{2}=\left[\frac{43.4^{2}}{4}+\frac{42.5^{2}}{4}+\frac{41.5^{2}}{4}\right]-\left[\frac{1}{12}\left(127.4^{2}\right]=0.45\right.$
SSE $=$ SST - SSR
$S S T=1353.64-\frac{127.4^{2}}{12}=0.68$
SSE $=.68-.45=0.23$

:O: $M S R=\frac{S S R}{k-1}=\frac{0.45}{3-1}=0.225$ $M S E=\frac{S S E}{N-k}=\frac{0.23}{12-3}=0.0255$ $F=\frac{M S R}{M S E}=\frac{0.225}{0.0255}=8.82$ $d f_{1}=k-1=2 d f_{2}=N-k=12-3=9$

Violations

- Lack of independence
- Example is time series
- Outliers
- Outliers tend to increase the estimate of sample variance, thus decreasing the calculated F statistic for the ANOVA and lowering the chance of rejecting the null hypothesis
- Nonnormality
- Do a histogram to check
- If sample size is small it may be difficult to detect
- If the samples are not seriously imbalanced in size skewness won't have much impact
- Do a normal Q-Q plot or normal quantile-quantile plot, it's a plot of the ordered data values (as Y) against the associated quantiles of the normal distribution (as X)

Pairwise comparisons

- There are procedures available for doing comparisons between the means of the classes in the anova
- Some of those available in SPSS
- Scheffe's test
- Bonferrani's test
- Tukey-Kramer
- \rightarrow best for ANOVA of unequal sample sizes
- Tukey test \rightarrow best for balanced designs

[^0]: k - is the number of sample
 N - total number of individuals in all samples
 X bar - is the mean

[^1]: $\mathrm{N}=$ total number of observation
 T is the total sum of observations

