

Coefficient Of Contingency

- Always < 1.0 but never $=1$
- Always 0-1.0
- Largest value depends on number of rows and columns
$c=\sqrt{\frac{\chi^{2}}{x^{2}+n}}$

- Why not X^{2} ?
- a) Doesn't tell much about strength or nature of relationship.
-b) Sample size influences value of X^{2}.
- i.e. If you take a particular cross - section and multiply all cells by 10 , you also increase the x^{2} value by 10 as the value of x^{2} depends on sample size as well as amount of departure from independence.

Phi

- Phi
- - measures based on x^{2}

$$
\Phi=\sqrt{\frac{\chi^{2}}{n}}
$$

max value depends on size of table if $r>2$ and $c>2 . \Phi$ can be >1.0.

Cramer's V

- It can attain a value of 1

$$
\begin{aligned}
& V=\sqrt{\frac{\phi^{2}}{\min (r-1),(c-1)}} \\
& V=\sqrt{\frac{\chi^{2}}{n(\min (r-1),(c-1))}}
\end{aligned}
$$

Example: Canadian firms

		Firm type		Total
	domestic	foreign		
	widely held	197221	44579	241800
level of ownership	effective control	87984	15843	103827
	legal control	84414	60641	145055
Total		369619	121063	490682

lambda

- Its main advantage relates to its asymmetrical nature.
- Contrary to other tests, the way variables are paired is of utmost importance; rows and columns are not interchangeable.
- Another advantage is the absence of constraints on the distribution of the variables

- Suppose we take the column as dependent
$\lambda=\frac{121063-121063}{121063}$

$$
\lambda=0
$$

- $\mathrm{E} 1=490682-241800=248882$
- $\mathrm{E} 2=(369619-197221)=172398$

$$
\begin{aligned}
&+ \\
&(121063-60641)=60422 \\
&=232820 \\
& \lambda=\frac{E 1-E 2}{E 1}
\end{aligned}
$$

- The λ tells you the proportion by which you reduce your error in predicting the dependent variable if you know the independent that's why its called a Proportional Reduction In Error measure.
- The largest the value can be is 1 .
- When variables are independent, $\lambda=0$.
- λ is not symmetric its value depends on which is the independent variable.

Symmetric $\boldsymbol{\lambda}$

- If you have no reason to pick one as dependent or independent, use symmetric λ.
- Symmetric $=\Sigma$ of 2 differences $/ \Sigma$ of denominator
- Example

$$
\lambda=\frac{16062}{369945}=0.043
$$

Limitations of Lambda

- Lambda is asymmetric
- Different values depending on which variable is the independent.
- Lambda can be misleading when one of the row totals is larger than the other.
- It may be preferable to use a chi-square based measure when the rows are very unequal.

- E1 $=240$ - All rows have an equal likelihood so you can take your choice	

Measures Of Association For Ordinal Variables

- Many measures are based on comparing pairs of case.
- Using the classes of variable as 1 : high, 2 : medium, 3 = low

Example					
City	Pop (000s)	Rank	Class	$\frac{\text { Retirees }}{(000 \mathrm{~s})}$	Class
City A	672	7	3	3.3	3
City B	956	5	2	11.7	2
City C	5775	1	1	175.0	1
City D	3269	2	1	18.4	2
City E	795	6	3	11.0	2
City F	969	4	2	5.6	3
City G	1942	3	2	22.0	1

Cross tabulation form

	Retirees class		
Pop class	1	2	3
1	1	1	0
2	1	1	1
3	0	1	1

- A pair of cases is concordant if the value of each variable is larger (or smaller) for one case than for the other case.
- p is the number of concordant pairs
- They are discordant if the value of one variable for a case is larger than the value for the other case.
- q is the number of discordant pairs
- When 2 cases have identical values, they are tied on any one of the values

Goodman \& Kruskal's Gamma

- A positive gamma say there are more
- like pairs than unlike pairs.
- The absolute value of gamma is the proportional reduction of error when using knowledge of concordance rather than a random choice.
- If variables are independent, gamma = 0; but if it equals 0 , it does not necessarily mean independence.

Example for 2 by 3 table

Type of pair	Number of pairs	Symbol
Concordant	$a(e+f)+b(f)$	P
Disconcordant	$c(d+e)+b(d)$	Q
Tied on x	$a d+b e+c f$	T_{x}
Tied on y	$a(b+c)+b c+d(e+f)+e f$	T_{y}

Kendall's tau - b

$\mathrm{T}_{b}=\frac{P-Q}{\sqrt{\left(P+Q+T_{x}\right)\left(P+Q+T_{y}\right)}}$

Where : T_{x} is the number of ties involving only the first variable T_{y} is the number of ties involving only the second variable

- No simple explanation in terms of proportional reduction of error.
- The statistics are more easily calculated if you lay them out in table like that below. Each pair of rows is only compared once. The comparison results in 1 of 3 outcomes; concordant (denoted P), disconcordant (denoted Q), or tied (where at least one set of ranks are tied). If the rows are tied on the X variable its entered as T and T_{x}, if its tied on variable Y its entered as T and T_{Y}.

Somer's d

- gamma, $\mathrm{T}_{\mathrm{b}}, \mathrm{T}_{\mathrm{c}}$ are all symmetric measures
- same as gamma except the denominator is sum of all pairs if cases that are not tied on independent variables.
- i.e.
$d=\frac{(P-Q)}{P+Q+\left(\text { pick } T_{x}, T_{y}\right)} d=\frac{(9-2)}{(9+2+5)}=0.437$

