

- By analysing the distribution of cell frequencies, the point pattern arrangement can be described.
- In nearest neighbour we look at average spacing of closest, quadrat analysis look at variability in number of points per cell.
- The absolute variability of cell frequencies can not be used because it is influenced by density of point (the mean number of point per cell)

- In a dispersed set of points, the cell frequencies will be similar and the variance will be low.
- If highly clustered, the variance will be high therefore a large VAR
- If set of points is randomly arranged, an intermediate value of variance will occur so a result near 1 suggests a random arrangement.
- In addition to being used as descriptive index, the VAR can be applied to test a distribution for randomness.
- Test statistic is t
- Another alternative is to use X^{2} where $X^{2}=\operatorname{VMR}(m-1)$ with

$$
t=\frac{V M R-1}{\sqrt{2 / m-1}}
$$ $\mathrm{df}=\mathrm{m}-1$

- where m is the number of cells

Types of Distribution

- Five general patterns
- Random any point is equally likely to occur at any location and the position of any point is not affected by the position of any other point. There is no apparent ordering of the distribution
- Regular every point is as far from all of its neighbors as possible
- Clustered many points are concentrated close together, and large areas that contain very few, if any, points

Example				
x	f	$\mathrm{f}^{*} \mathrm{x}$	x^{2}	$\mathrm{f}^{*} \mathrm{x}^{2}$
0	20	0	0	0
1	12	12	1	12
2	3	6	4	12
3	1	3	9	9
		21		33

the scale problem

- the application of quadrat methods is affected by scale because selection of the size of cell is always arbitrary

- if fitting models of dependence (that is nonrandom) you just show that the parameter values don't vary significantly with changes in quadrat size
- otherwise scale is influencing results in some unknown manner

- the Kolmogrov - Smirnov D statistics
- an alternative to X^{2} and t tests
- measures goodness of fit by testing maximum deviation between cumulative frequency distribution and observed frequency distribution

$$
D=\frac{\max \mid c u m \text { freq }- \text { obs freq } \mid}{n}
$$

- $d f=n, n=$ number of quadrats
- D statistic has advantage over X^{2} that the full range of values of points are considered in evaluation
- H_{0} : $\mathrm{D}=0.0$
- H_{1} : $\mathrm{D}>0.0$

Example				:\%:\%	
M	cum freq (Poisson)	obs freq	\| diff		
0	20.1	20	. 1		
1	31.8	32	. 2		
2	35.2	35	. 2		
3	35.9	36	. 1		
4	36.0	36	0		

- can use Poisson distribution to generate a random freq count - $\lambda=21 / 36=.583$	$P(m)=\frac{e^{-\lambda}\left(\lambda^{m}\right)}{m!}$

0	0	1	0	0	1	
1	1	0	1	0	0	
0	1	3	0	1	1	
1	0	2	2	1	0	
0	1	0	0	1	0	
0	0	2	0	0	0	

- $.56 \times 36=20.1$

$$
P_{o}=\frac{2.7183^{-583}\left(0.583^{0}\right)}{0!}=0.556
$$

Example

- Using the following maps determine if the occurrence of tornado touchdowns in Illinois is random or not.
- The map contains 450 points and 63 cells.
- The observed frequency for tornados in Illinois over 54 years is:

- $\mathrm{H}_{0}: V M R=1$
- H_{1} : VMR ... 1
- mean cell frequency = n / m
- Mean $=450 / 63=7.14$
- calculate the variance
- where $f_{i}=$ frequency of
- $\begin{aligned} & \text { where } \mathrm{f}_{\mathrm{i}}=\text { frequency of } \\ & \text { cells with } \mathrm{i} \text { tornados } \\ & \text { - } \mathrm{X}_{\mathrm{i}}=\text { =number of tornados }\end{aligned} \quad V A R=\frac{\sum f_{i} x_{i}^{2}-\left[\left(\sum f_{i} x_{i}\right)^{2} / m\right]}{m-1}$ per cell
- H_{1}. VMR ... 1

$$
V A R=\frac{3986-\left(450^{2} / 63\right)}{62}=12.45
$$

- calculate variance-ratio
- $\mathrm{VMR}=\mathrm{VAR} / \mathrm{MEAN}=12.45 / 7.14=1.74$
- Calculate test statistic
- $\mathrm{X}^{2}=\operatorname{VMR}(\mathrm{m}-1)=1.74(62)=107.88 \mathrm{p}=.003$

Example 2

- Last year's class were seated in the following pattern on a given day
- Were they randomly distributed?

5	1	6
13	8	21
8	12	20
0	4	4
26	35	51

$\text { Mean }=\frac{n}{m}=\frac{51}{8}=6.4$ $V A R=\frac{\sum f_{i} x_{i}^{2}-\left[\left(\sum f_{i} x_{i}\right)^{2} / m\right]}{m-1}$	

						$\because: \%$ $\because 8: 8$ $\because 8: 8$ $\vdots 8 \%$
X	f	f_{x}	x^{2}	$f x^{2}$	$\Sigma \mathrm{fx}^{2}=51 * 51=2601$	
0	1	0	0	0		
1	1	1	1	1		
4	1	4	16	16		
5	1	5	25	25		
8	2	16	64	128		
12	1	12	144	144		
13	1	13	169	169		
	8	51		483		

- an alternative is

$$
\chi^{2}=\operatorname{VMR}(m-1)
$$

- $X^{2}=3.5(7)=24.5 \mathrm{df}=7$ significant at $\alpha=.05$
- $X^{2}{ }_{c}=14.07$

- $\mathrm{df}=\mathrm{m}-1$
$t=\frac{V M R-1}{\sqrt{2 / m-1}}$
$t=\frac{3.5-1}{\sqrt{2 /(8-1)}}=\frac{2.5}{\sqrt{2 / 7}}=4.67$

Weakness of Quadrat Method

- Actually a measure of dispersion, and not really pattern, because it is based primarily on the density of points, and not their arrangement in relation to one another
- Results in a single measure for the entire distribution, so variations within the region are not recognized
- Grid size affects results

Advantages of Nearest Neighbor over Quadrat Analysis

- No quadrat size problem to be concerned with
- Takes distance into account
- Problems
- Related to the entire boundary size
- Must consider how to measure the boundary Arbitrary or some natural boundary
- May not consider a possible adjacent boundary

