

 By analysing the distribution of cell frequencies, the point pattern arrangement can be described.

- In nearest neighbour we look at average spacing of closest, quadrat analysis look at variability in number of points per cell.
- The absolute variability of cell frequencies can not be used because it is influenced by density of point (the mean number of point per cell)

Interpretation

- In a dispersed set of points, the cell frequencies will be similar and the variance will be low.
- If highly clustered, the variance will be high therefore a large VAR.
- If set of points is randomly arranged, an intermediate value of variance will occur so a result near 1 suggests a random arrangement.
- In addition to being used as descriptive index, the VAR can be applied to test a distribution for randomness.

 Clustered many points are concentrated close together, and large areas that contain very few, if any, points

- Dispersed points are widely spread out
- Perfectly concentrated points are all in same location

Exa	mple				
x	f	f*x	x ²	f*x ²	
0	20	0	0	0	
1	12	12	1	12	
2	3	6	4	12	
3	1	3	9	9	
		21		33	

- if the hypothesis of randomness is to be accepted it must be shown that it is true at a variety of scales
- if not true then hypothesis of randomness must be rejected

• otherwise scale is influencing results in some unknown manner

Example						
М	cum freq (Poisson)	obs freq	diff			
0	20.1	20	.1			
1	31.8	32	.2			
2	35.2	35	.2			
3	35.9	36	.1			
4	36.0	36	0			

0	0	1	0	0	1	
1	1	0	1	0	0	
0	1	3	0	1	1	
1	0	2	2	1	0	
0	1	0	0	1	0	
0	0	2	0	0	0	

М	N	N x M	
0	20	0	
1	12	12	
2	3	6	
3	1	3	
	36	21	

Example

• Using the following maps determine if the occurrence of tornado touchdowns in Illinois is random or not.

- The map contains 450 points and 63 cells.
- The observed frequency for tornados in Illinois over 54 years is:

# of tornados	obs freq						
0	0	5	10	10	3	15	1
1	1	6	5	11	3	16	0
2	2	7	8	12	0	17	0
3	7	8	6	13	0	18	1
4	4	9	8	14	4	19+	0

$$Mean = \frac{n}{m} = \frac{51}{8} = 6.4$$
$$VAR = \frac{\sum f_i x_i^2 - [(\sum f_i x_i)^2 / m]}{m - 1}$$

x	f	f _x	x ²	fx²	Σfx ² =51*51=2601	
0	1	0	0	0		
1	1	1	1	1		
4	1	4	16	16		
5	1	5	25	25		
8	2	16	64	128		
12	1	12	144	144		
13	1	13	169	169		
	8	51		483		

Advantages of Nearest Neighbor over Quadrat Analysis

- No quadrat size problem to be concerned with
- Takes distance into account
- Problems
 - Related to the entire boundary size
 - Must consider how to measure the boundary
 - Arbitrary or some natural boundaryMay not consider a possible adjacent boundary

