

1 sample test

- Research question: are wheat growing farms located with respect to soil type? That is, is wheat grown in particular soil-type areas?
- 1) take a random sample of 100 wheat farms and determine the soil types underlying the farms
- 2) there are 4 'classes' of soil type

Soil class					
	clay	sand	loam	limestone	
frequency of wheat farms	30	30	30	10	Σ=100
this is the 'ot	served	l' distributi	on of wh	neat farms	
3) under a nu distribution? the rationale you would ex	ull hypo for the	othesis what test is tha y chance	at would t you ca	l be our 'expe n compute w	ected' /hat

Σ=100

want as long as the categories are mutually exclusive

- the alternate hypothesis is: $H_1 P^1 \neq P^2 \neq P^3$
- 2) set the level of significance (or type I error): α
- typically in geography $\alpha = .05$ or $\alpha = .01$
- 3) select the appropriate test statistic
- · any test between frequencies of mutually exclusive categories requires chi square

• 4) comp test stat	outation c	of the			
category	O observed	E expected	D difference	(O-E) ²	(O-E) ² /E
clay	30	25	5	25	1
sand	30	25	5	25	1
loam	30	25	5	25	1
limestone	10	25	15	225	9
Total					12

• α =.05 the probability is less than or equal to 5% on any one test of the null hypothesis that the frequency of farms is equally distributed across all categories

- there are cases where you might not want to use the number of occurrences/number of categories as you expected value
- if you have some other way of determining what the expected values might be, you can use that

• the distribution of land in each soil type is shown next

question is important

	-l		La ava	line e atra a a	
	сіау	sand	Ioam	limestone	
of land under soil type	30	40	20	10	Σ=100

observed	30	40	20	10	
E	20	40	20	10	-
Expected	30	40	20	10	
what we foun	d was	40	20	10]
what we foun	d was	40	20]
what we foun	d was	30	30	10]

$\chi^2 =$	$\sum_{i=1}^{k} \frac{(O_i)}{(O_i)}$	$\frac{-E_i)^2}{E_i}$			
category	O observed	E expected	D difference	(O-E) ²	(O-E) ² /E
clay	30	30	0	0	0
sand	30	40	10	100	2.5
loam	30	20	10	100	5.0
limestone	10	10	0	0	0
Total					7.5

- we cannot reject H₀: cannot say that we would expect the value 7.5 to occur > 95 out of 100
- if H_0 is correct, the probability of 7.5 occurring is > α =0.05
- therefore farming is not related to soil type

• also known as continuity correction

- these illustrate an important restriction on χ² in that for many categories there should not be small frequencies
- also the data must be in frequencies, χ² will give false results if used on proportions or percentages of occurrences in categories
- this last example illustrates a case where you can use external information for choosing your expected values

- an example is using the poisson distribution to generate your expected values
- an alternative test for this purpose is the Kolmogorov-Smirnov test (k-s test)

Bornmany Table for Chiseguare Goodness-of-Fit Proportional: Interprevincial Migration to					
Province of origin		Expected number of interprovincial migrants			
	Observed number of interprovincial migrants	"Population" model	"Distance" model	"Composite" model	
Newfoundland	11	19	8	13	
Prince Edward Island	4	4	12	8	
Nova Scotia	25	30	12	21	
New Brunewick	14	24	14	19	
Quebec	50	231	18	125	
Untano	236	337	21	179	
Pariateka	73	37	85	61	
Saskatchewan	05	33	137	85	
Niberta Militan Tanihari	307	85	340	213	
Northwest Tarribulas	-0	1	58	29	
ALC: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0	2	245	50	
Trital	803		-	0.00	

