

- Normal distribution video clip
- To view an unedited version visit: http://www.learner.org/resources/series65.html\#

mean for metric data

- 2 important properties
- 1) sum of deviations from the mean $=0$
- 2) sum of + deviations $=$ sum of - deviations
- 2 advantages
- 1) more stable than other measures
- 2) other important statistics can be derived using it
- Technically it is called the arithmetic mean

The mean

- variance and standard deviation
- problems
- a) fractional values
- b) cannot be computed if data is open ended
- c) strongly affected by extreme cases

Grouped data

- mean for grouped data

$$
x=\frac{\sum x f_{t}}{N}
$$

The weighted mean

Why use it?

- Each individual data value might actually represent a value that is used by multiple people in your sample. The weight, then, is the number of people associated with that particular value.
- Your sample might deliberately over represent or under represent certain segments of the population. To restore balance, you would place less weight on the over represented segments of the population and greater weight on the under represented segments of the population.

$$
\bar{X}=\frac{\sum X_{i} w_{i}}{\sum w_{i}} \begin{aligned}
& \begin{array}{l}
w_{i}=\text { weight associated with ith case } \\
\text { weights compensate for the higher } \\
\text { chances of selecting some cases } \\
\text { than others }
\end{array}
\end{aligned}
$$

Sensitivity of the Mean to a Single Outlier	Statistics
$\$ 21,000$	Total $=\$ 500,000$
21,000	
22,000	Mode $=\$ 21,000$
26,000	
27,500	Median $=\$ 26,000$
32,500	Mean $=\$ 500,000 / 7$
349,000	$=\$ 71,428.57$

Sum of squares

- these measures of central tendency tell us nothing about the variability in the data or the dispersion
- one way to do this is compare the values with the mean value
- the simplest way is to subtract the mean from each value to see if it is higher or lower
- if you do this you get both + and - values
- if we summed them to get a sort of index we would get 0 as a total, to get around this we square the differences $\left|x_{i}-\bar{x}\right|$ this known as the sum of squares

Sum of squares

- or the total squared variation about the mean
- from this we can derive the variance and the standard deviation
- variance is the sum of the squared deviations from the mean divided by N for the population and $\mathrm{n}-1$ for a sample
- remember that sample statistics are estimates of the population statistics
- the sample uses $n-1$ because it has been shown that the use of N for a sample results in an underestimation of the population variance

Variance

$$
\begin{aligned}
\sigma^{2} & =\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N} \\
s^{2} & =\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
\end{aligned}
$$

Standard deviation

- a short cut formula for the sample variance is

$$
s^{2}=\frac{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}
$$

standard deviation $\quad S=\sqrt{S^{2}}$
a large standard deviation means a large or 'uncorrected sum of squares'
and the second term is called the "correction term for the mean" A name for the numerator is the "corrected sum of squares", and this is usually abbreviated by Total SS.

$\left\lvert\, \begin{aligned} & \because \because \\ & \because \because: ~ \\ & \because: \\ & 0\end{aligned}\right.$

- It is called corrected because theoretically there is no error in the sum of squares
- This comes up again in analysis of variance later in the course
- In geog 201 it was denoted SS $_{x}$

	FOR a $\begin{aligned} & \Sigma \mathrm{X}_{\mathrm{i}}=3+7+9+2+4+6=31 \\ & \Sigma \mathrm{X}^{2}=3^{2}+7^{2}+9^{2}+2^{2}+4^{2}+6^{2}=195 \\ & \left(\Sigma \mathrm{X}_{\mathrm{i}}\right)^{2}=312=961 \\ & \bar{x}=31 / 6=5.16 \end{aligned}$ $s^{2}=6(195)-961 / 6(6-1)=6.96$ for b	$\begin{aligned} & : \because: \\ & : \because: \\ & : \because: \\ & : \end{aligned}$

Grouped data variance

- variance can also be calculated for grouped data
- $s^{2}=\sum \frac{(x-M)^{2} f}{N}=\sum \frac{x^{2} f}{N}-M^{2}$
- where $\mathrm{f}_{\mathrm{i}}=$ frequency of classes
- $\mathrm{M}=$ grouped mean

- problem with variance and standard deviation is that for the purpose of comparison, they are sensitive to the magnitude of the data
for example in the previous data the variance and standard deviation of b was 10 times that of a
- to compare a and b we need to standardize - coefficient of variation $c v=\frac{s}{\bar{X}}$
- for a and b the coefficient of variation is $2.639 / 5.155=.51$ or $26.39 / 51.6=.51$

Normal curve

- Special curvature of normal curve
- Can be fully described by mean and standard deviation
- Always follows 68-95-99.7 rule
- 68% of all observations within 1 sd of mean
- 95\% of all observations within 2 sd's of mean
- 99.7% of observations within 3 sd's of mean

Normal curve
= 68-95-99.7 rule

Euclidean median

- Central location that minimizes the unsquared distances rather the squared ones
- It is methodically complex and has to be solved iteratively

$$
\left(X_{e}, Y_{e}\right)=\min \sum \sqrt{\left(X_{i}-X_{e}\right)^{2}+\left(Y_{i}-Y_{e}\right)^{2}}
$$

$$
\left(X_{w e}, Y_{w e}\right)=\min \sum f_{i} \sqrt{\left(X_{i}-X_{w e}\right)^{2}+\left(Y_{i}-Y_{w e}\right)^{2}}
$$

Weighted Euclidean median

- Has important applications in geography
- Weber location problem
- Used in public and private facility algorithms
- Urban fire station
- Store site for clothing store
- Can be extended to multiple locations to solved at one time
- Neighbourhood health centers

standard distance

dispersion has it counterpart in bivariate descriptive statistics

- because distances are deviations in the geographic sense, it is defined as the equivalent of a standard deviation

$$
S D=\sqrt{\sum \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}+\sum \frac{\left(y_{i}-\bar{y}\right)^{2}}{n-1}}
$$

Worktable for Calculating Standard Distance					: $\because: \%$
Locational coorrinatios					$\because: \%{ }^{\circ}$
Point	x_{1}	r_{i}	$\boldsymbol{x}_{\text {t }}{ }^{\text {a }}$	$r_{1}{ }^{2}$	\%
A	${ }^{28}$	1.5	${ }^{78.84}$	225	
${ }_{\text {B }}^{\text {B }}$	1.6 3.5	3.8 3.3	2.56 1225	14.44 1089	
c	${ }_{4.4}$	${ }_{2} 2.0$	${ }_{1936}^{1225}$	10.89 4.00	
E	4.3	1.1	18.49	1.21 578 128	
	${ }_{4.9}^{5.2}$	${ }_{3.5}^{2.4}$	27.04 24.0	1.76 12.25	
Fiom earier calculation ot mesic center:					
$\bar{X}_{s}=3.81 P_{c}=2.51 \chi_{t}=14.52{ }_{2} Y_{2}=6.30$					
$\hat{n=7} \quad \sum X_{1}^{2}=111.50 \quad 2 y_{l}^{2}=50.80$					
$s_{0}=\sqrt{\left(\frac{\Sigma X_{z}^{2}}{n}-\bar{X}_{z}\right)+\left(\frac{\Sigma Y^{2}}{n}-\bar{Y}_{f}\right)}$					
$-\sqrt{\left(\frac{111.50}{7}-14.52\right)+\left(\frac{50.80}{7}-6.30\right)}$					
- 1.54					

$$
S D_{y}=\sqrt{\sum \frac{\left(y_{i}-\bar{y}\right)^{2}}{n-1}}
$$

for weighted observations

$$
S D_{w}=\sqrt{\frac{\sum w_{i}\left(x_{i}-\bar{x}\right)^{2}}{\sum w_{i}}+\frac{\sum w_{i}\left(y_{i}-\bar{y}\right)^{2}}{\sum w_{i}}}
$$

this is far too tedious to do by hand so we would have to use a computer program

