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Abstract—A new procedure is described for determining the catchment areas for ali cells in a regular
elevation grid, a problem of fundamental importance in analyzing drainage patterns, mineral deposition,
erosion, and pollution in streams and groundwater. The new procedure allows for divergent flow, which
arises in most natural terrain on hill slopes. Failure to allow for this can introduce serious artifacts in
the calculations. The procedure is demonstrated on analytic surfaces that give poor results if divergent
flow is ignored, and is applied to natural terrain. Also discussed is the problem of ciearing sinks or pits

in the elevation model and flat spots.

Key Waords: Catchment area, Water Row, Digital elevation model, Drainage basin, Terrain analysis,

Gernerat geomorphometry.

INTRODUCTION

When analyzing the hydrology of a piece of terrain
using a computer, the most important step is
determining the catchment area of each part of the
terrain. This can be used in determining surface
rainfall runoff, stream and subterranean flow,
likely erosion sites, mineral distribution, soil traffi-
cability to vehicles, and sources or distribution of
pollution, among many applications. The approach
adopted usually depends on the model of terrain with
which one starts and the accuracy of the desired
result.

There have been two models of geographic surfaces
used in computing applications: continuous and dis-
crete. Continuous models have been used widely in
the form of (1) triangulated networks derived from
discrete sample points, and (2} traditional contour.
maps. Discrete models have become more important
in recent years as computer memory has decreased in
cost. The surface is represented by point heights on
a rectangular grid. The density of the grid frequency
gives finer detail than either of the continuous
methods and better graphical representation in the
form of images. Because the model is stored as a
simple matrix, values are accessed easily without
having to resort to a graphical index, special data
structures, and interpolation procedures. The auto-
matic correlation of stereophotos can give elevation
matrices as a byproduct reducing the cost of obtain-
ing such models, albeit with greater errors in some
situations, because they refiect the elevations of the
tops of vegetation or surface features rather than the
ground.

The analysis of elevation models to determine
drainage patterns has been undertaken by a variety of
workers. O’Loughlin {1986) has developed a method

that commences with surface elevation contours, and
attempts to determine catchment area by advancing
uphill from points on the contours, interpolating
between the contours. Briggs (1989), among others,
has assumed a triangutated surface. He calculates an
area density function at points along the edges of the
triangles. O’Callaghan and Mark (1984), Martz and
de Jong (1988), and Jenson and Domingue {1988)
have developed methods for a regular elevation grid.
Because of the increasing importance of grid-based
elevation models, this paper is concerned with the
problems inherent in the existing methods for this
type of discrete surface, and shows where improve-
ments can be made.

SIMPLE GRID-BASED CALCﬂLATlON

The approach adopted by O’Callaghan and Mark '
(1984) was to determine for each point in the grid the -

direction to the lowest of its neighbors, allowing a
l/ﬁ factor for diagonal neighbors (that are a greater
distance from the point; see Fig. 1), and storing the
approptiate index in a matrix. Another matrix is set
up containing the number of neighbors whose
outflow will flow into each cell. The catchment area
is built up from a matrix initialized to unity at each
point. The cell outflows are added iteratively to lower
neighbors when the total inflow has been determined,
decrementing elements of the matrix of inflow counts
in order to flag when a cell’s inflow has been com-
pleted. The problem of sinks or pits in the grid is
tackled by applying a filter to the surface prior to the
catchment calculation, carrying out local elevation
averaging. ) :

Martz and de Jong (1988) also determine a matrix
of steepest descent directions, but use it differently
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Figure 1. Calculation of steepest descent allows for greater
distance to diagonal neighbor. In this situation, steepest
descent is southwards.

to determine area. For each point in the matrix,
they proceed downhill, adding the unit area to all
of the cells that runoff from the cell will pass
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outflow from the sink must be traceable to the edge
of the grid, otherwise a larger watershed boundary
must be constructed first. Flat areas are handled by
identifying the outlets, points of lower height adja-
cent to the flat area. Flow is assigned to the outlets
from the adjacent points on the edge of the flat
area, and in turn, flow is assigned from neighbors of
these points on the flat area to the edge points,
repeating the procedure until the whole area has been
involved.

An alternative, elegant approach for determining
catchment area can be adopted with a more modern
computer language that supports recursion, such as
“Cn.

for each point [i,f] in the matrix
Catchment(i,j] = 0;
for each point [1,{] in the matrix
neighbr_check(i,j);
neighbr_check(i,j)
grid celf
if (Catchment[i,j] <= 0)
{

Catchment[ijl=1.;
for each neighbour [x,y] of point [ij]
(

if (Height{x,y] > Height[ij])
{
if (maxslope(x,y) leads to [i,j])

}
)

J
return(Catchmentlij]);

Initialize the matrix of catchment areas to zero

Call the routine to caiculate the catchment areas

Definition of the routine to check the neighbours of
point i,f and calculate the catchment area for that

Catchment[i,j] += neighbr_check(x,y);

through. Although the procedure is different from
that of O’Callaghan and Mark, it will give the
same result. This approach also is adopted by
Morris and Heerdegen (1988). Martz and de Jong
handle sinks differently, as a subsequent step. They
search outwards from a sink looking for the lowest
and closest saddle and fill the sink to that height.
The catchment area of the cells in the grid that
are raised in height are all set to the total catchment
area of the sink, and the sink’s catchment is spilled
downhill from the saddle. In the event that more
than one cell is a potential saddle, the one with the
steepest descent to its neighbor is adopted for the
spill.

Jenson and Domingue (1988) use the matrix of
steepest descent directions in the same way as
O’Callaghan and Mark. Their procedure differs from
the others in the handling of sinks and flat spots.
They fill sinks in a prior step, using the matrix of
directions to determine a watershed boundary for
each sink. They fill the sink to the lowest height on
the watershed boundary, being careful that adjacent
sinks are not filled to create a larger flat sink; the

First, the matrix of catchments, Catchment, is set to
zero. Then a routine, neighbr_check, is called for each
point in the matrix. This routine checks to see if the
catchment area for the point has been determined
already, and if so, simply returns that value. If not,
it calculates the catchment area. This area will be
unity, the area of the cell itself, plus the contributions
from its neighbors. Routine maxslope(x,y) simply
returns an index indicating which neighbor of point
(x,y) is the direction of steepest descent, based on the
local values of Height. The ‘+ ="' operator incre-
ments the value held at the address referred to on the
left-hand side by the value on the right-hand side.

This method is computationally efficient, but relies
on the existence of enough dynamic memory to
support the stack at the greatest depth of recursion.
As long as the number of local variables in
neighbr_check is kept to a minimum, this usually will
not present a problem. Execution time will be pro-
portional to grid size because for each grid cell only
the catchment areas of its eight neighbors must be
considered. This is in contrast to the earlier grid-
based methods, where execution time is proportional
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to a higher power (1.5-2) of the number of points,
because, for each point, its area must be added to the
catchments of many downstream.

REPRESENTING DIVERGENT FLOW

The main problem with the simple approach em-
bodied in these methods is that it does not represent
well the actual surface flow over much natural
terrain, particularly divergent surfaces. We will
construct an artificial surface, a cone, whose elevation
contours are shown in Figure 2. If we now calculate
the catchment areas for points on this grid and
draw contours through them, the results can be
seen in Figure 3. There is a strong bias towards
the eight neighboring directions and away from
intermediate directions. This also can be seen in
a shaded image of the catchment areas, and will
cause artifacts on much natural terrain on hill
slopes.

Clearly, the outflow from a grid cell does not pass
only to its neighbor of steepest descent, but may be
distributed among more than one of the neighbors
(Freeman, 1989). I have tried many methods for
partitioning this outflow, and have determined one to
be the most satisfactory by far. It is not free from
artifacts, but has errors at an acceptable level for
most purposes.

In this method, the outflow from a cell is assumed
to be shared between all of the neighbors lower than
the cell. The fraction of the catchment to be passed
on to neighbor 7 is given by

Max(0, Slope?)

./; = 8 -
Y (Max(0, Slope/))

j=1
The value of parameter p that gives the best
results is p = 1.1. In Figure 4 can be seen the catch-
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Figure 2. Elevation contours for artificial surface, cone.
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Figure 3. (A) Drainage contours for conical surface, calcu-

lated using steepest descent method; (B) shaded drainage

image for conical surface, where darker color is used to
show larger catchment area.

ment area contours for the cone for selected values
of p. '

For p = 1.1, the errors introduced in the calcu-
lation are <5% in the worst situation. This is small
when compared with the errors that are inherent
in most grids derived by interpolating scattered data
or correlating stereophotos, keeping in mind that
area determination integrates over the heights
compounding errors in the basic grid. Other methods
of estimating catchment area also are subject to
error, but as yet unmeasured. For example, interpo-
lating between contours is difficult, particularly if
proceeding uphill (Moore, O’Loughlin, and Burch,
1988).
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The recursive procedure given can be modified There are two approaches to handling flat spots
simply to support this partitioning of outflow at each ~ when determining catchment areas. (A) One is to say

grid cell.

that the modeled surface is not really flat (or at least

neighbr_check(i,j)

if (Catchment[i,j] <= 0)
{

Catchment(i,jl =1.;
for each neighbour [x,y] of point [i,j]
{

if (Height{x,y] > Heightli fl)
(
if (fract_flow(x,y,i,j) > 0)

Catchmentlij] += fract_flow(x,y,i,j)*neighbr_check(x,y); §

J
1

return(Catchmentlijl);
]

fract_flow(x,y.i,j)

Oto 1.
(

Sum =0;
for all neighbours (k) of [x,y] lower than [x,y]

Sumt +=down_slopé, , , ;
return( dawn_slape,’,'y,_ﬂm | Sum) ;

Definition of the revised routine to check the
neighbours of point I,] and calculate the catchment
area for that grid cell

Definition of a routine to calculate the fraction of
catchment area for grid cell [x,y] which is to be
passed on to cell fif. The result is a number from

This differs from the original procedure in the line
indicated by §. The catchment area of point [f, ] is
incremented now by the fraction of the catchment
area of each of its neighbors that will flow to [i, ].
This fraction is calculated in routine fract_flow,
which also is shown. In that routine, down_slope is a
function returning the drop in height between two
points (divided by /2 for diagonal neighbors). If the
grid had different spacings in the X and Y directions,
this procedure could be easily modified accordingly.

This general procedure is adequate to give an
accurate calculation of catchment areas over most
elevation grids. In practice, the procedure is more
complicated owing to the existence of flat spots,
sinks, and scale effects.

FLAT SPOTS

Flat spots are defined as points or groups of points
where the steepest descent is to one or more neighbors
of equal height to the point or group. They arise in
a grid for a number of reasons:

(1) Data truncation on output when converting to
fixed precision decimal values can cause loss of
information on slope direction.

(2) Grid generation from contour data can cause
strings of identical values in the grid, which can
give flat spots when contours are close and the
surface fairly flat.

(3) Flat spots also can arise from some methods of
eliminating sinks.

that surface water will have a movement direction),
and to select a drainage direction based on distance
to lower neighbors of the flat area, with surface flow
tending to minimize distance to the outlets. (B) The
alternative is to say that any point in the flat area
will have as its catchment area the whole combined
catchment area of the whole flat area, so that the flat
area is seen in a catchment area image as a lake.

Approach (A) is adopted by Jenson and Domingue
and (B) by Martz and de Jong. Approach (A) is better
if data truncation is the cause of the flat spots, but can
cause artifacts in the resulting values with some data.
If a broad river is encompassed in the elevation grid,
river bends will not be shown properly. If the shortest
distance to an outlet of the flat spot is along one of
the eight near-neighbor directions from the predomi-
nant input, there will be no spreading of this inflow
along the way towards the outflow. Approach (B)
gives clearly interpretable results if the area is gen-
uinely flat. However, it gives artifacts on the lower
reaches of a river if data truncation causes steps in
elevation.

The method that Jenson and Domingue use (ap-
proach A) is to start at the outlets to the flat area, and
consider the neighbors to these points. If a neighbor
is in the flat area and has not been assigned a flow
direction, its flow direction is set to the outlet point.
Points in the flat area are searched again to locate
neighbors to these points without flow directions,
their flows set to the neighbors with flow directions.
This procedure is repeated until all points in the flat
area have been given a flow direction. A strength of
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Figure 4. Drainage contours for conical surface, calculated using new divergent flow algorithm for
different values of parameter p: (A) has p =1, (B) has p = 1.1, (C) has p = 1.25.

this procedure is that more than one outlet can be
handled. A disadvantage of this procedure is that
the flow directions selected will depend on the order
in which the points are considered. Although different
results could be obtained with the same general
procedure, it should be noted that the path of flow
over a flat area is not clearly defined mathematically
(at least on a discrete surface), and that the steepest
descent method has to make arbitrary selections
in other situations as well. On sloping terrain, if
a point has more than one neighbor of steepest
descent, there is no objective method of making the
selection.

Within the context of divergent flow, a better
procedure can be adopted to implementing approach
(A). The outlets to the flat area are determined. Then

the flat area is scanned to locate points that neighbor
the outlets. These points are given an index of zero.
The flat area is rescanned for points that do not have
an index but which neighbor the zero-index points.
They are given an index of one. The next scan assigns
an index of two, and so on until all points in the flat
area have been assigned. Drainage then is considered
in order from the highest indices to the lowest.
Inflows from neighbors of higher elevation are
handled using the normal divergent algorithm. Infl-
ows from flat neighbors will only be from points of
index one higher. Outflow to flat neighbors is parti-
tioned equally between all neighbors of index one
lower.

In spite of the objective nature of this pro-
cedure, artifacts remain in the results because of the
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preference given to shortest distance. Spreading of
the flow does occur, but not as much as is observed
in practice. Diagonal flows dominate, because the
index assignment treats diagonal distances as being
equivalent to distance on the cardinal directions.
The procedure can be improved by giving priority
to cardinal directions when assigning indices to
neighbors, but this will cause cardinal flows to dom-
inate. A better procedure is to assign indices to
the points, two higher for cardinal neighbors and
three higher for diagonal neighbors. This ratio of
two to three more closely approximates the actual
distances (I:ﬁ). Outflow then is partitioned in
proportion to the difference in index. This is by
far the best procedure, but the basic problem of
approach (A) remains: large flat areas such as
broad river bends will not be shown; the adoption
of the shortest direction for flow will result in the
water flowing in a narrow channel on the inside of the
bend.

With approach (B) the philosophy of divergent
flow calls for a different method from Martz and
de Jong if there is more than one outlet from the
flat area. In their method, all outflow from the
flat area is assigned to the single neighbor with
the steepest descent. We will instead adopt some
method of sharing the outflow among the various
contenders.

Because the flat spot can have the shape of a block
with a tentacle emanating from it (following a con-
tour), it is unreasonable to seek all lower neighbors
along the flat area for sharing the outflow. Along
the tentacle, the outflow will be the result of the
local inflow, rather than being influenced by more
remote inflows. Therefore, the procedure adopted is
to:

(1) Identify all points in the flat area that have
a lower neighbor; give these an index of
zero,

(2) Assign a positive index to all other points in the
flat area.

(3) Identify contiguous blocks with a nonzero
index.

(a) For each contiguous block, sum its area and
all inflows from higher neighbors.

(b) Assign this total area to all points in the
contiguous block.

(c) Divide the total area equally between all
points with an index of zero that neighbor
the block.

(4) For all points with an index of zero, add
inflows from higher neighbors.

This procedure does not remove all artifacts of
approach (B), but gives reasonable performance ex-
cept on rivers, where the flow direction is not always
clear in the resulting image. For this reason, I usually
use approach (A).

Regardless of which of the procedures (A) or
(B) is adopted, the overall drainage analysis is
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best tackled by first building a list of all flat areas
in the elevation grid. These then are handled one by
one in descending height order. This ensures that
flat areas do not have to be handled recursively,
As a side effect it also reduces the depth of
recursion in the normal area estimation procedure
(neighbr_check).

SINKS OR PITS

The primary approach I have adopted is to com-
mence with elevation grids that do not contain sinks
(Hutchinson, 1984, 1988, 1989; Freeman and
Hutchinson, 1988), consistent with their rarity in
nature. If elevation grids do contain sinks, they can
be removed optionally before calculating catchment
areas in a method similar to that of Martz and de
Jong, raising the height of the low spot to that of the
lowest saddle.

The procedure of Martz and de Jong can select the
wrong saddle under some rare circumstances. They
consider a fixed sized area about the sink. If they are
unable to locate a saddle within this area, they
increase the size of the area by a fixed amount and try
again. Thus, if the lowest saddle is outside the first
area but a higher saddle is within it, the higher saddle
will be selected in preference to the lower more
distant saddle.

In an endeavour to avoid this problem I have
adopted a different approach, but it is similar to
that of Morris and Heerdegen (1988). From the
sink, an area is built up, point by point, by adding
the lowest neighbor to the low, sink area. When a
lowest neighbor point is located which itself has a
lower neighbor that is not within the sink area
already identified, a saddle has been located. The
sink and its surrounding area is raised to that
height.

For this approach to be successful, it is necessary
to identify in advance a complete list of sinks,
including flat sinks which can be harder to locate. All
sinks then are treated, one at a time. The problem
that Jenson and Domingue encounter and need to
specially handle, of two sinks locating the one saddle
and spilling into each other (a looping condition) just
does not arise.

SCALE EFFECTS

The divergent algorithm described is satisfactory
except in coarse grids. In these situations, river
courses may follow a single line of grid cells. How-
ever, the divergent algorithm causes the flow pattern
to spread wider than simply the river channel, cover-
ing the flood plain surrounding the channel. In such
situations, it is better to modify the catchment algor-
ithm to assess at each grid cell whether the local
topography is convergent or divergent. If the topog-
raphy is convergent, the simple steepest descent
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Figure 5. Test for convergence of surface at point can be

based on path of contour equal to height of point. Mid-

point of line joining contour intersections will form vector

from point. If this vector coincides generally with direction

of steepest descent, that is, towards steepest neighbor or

either of points beside it, surface is deemed to be convergent
at point.

algorithm should be used instead of the algorithm
that supports divergence.

The test that has been adopted for convergent
topography is as follows:

(1) For a grid cell, check the bounding square
defined by its eight neighbors (Fig. 5). If
contours were to be drawn through this
area, of height equal to the central cell height,
determine the numbers of intersections these
contours would make with the lines of the
surrounding square. If there are more than
two, the surface is divergent.
Determine the mid-point of the line joining
these two contour intersections (the average of
the two points, see Fig. 5).
(3) If the vector from the grid point to this mid-
point is in the same general direction as

@)

©

Figure 6. Elevation contours for analytic surface with two
hills and saddle.
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Figure 7. Drainage contours for surface of two hills

and saddle, calculated using new divergent flow algorithm

with parameter p = 1.1. Slopes have uniform drainage,

except for roughly east-west gullies which take most of
runoff.

the direction of steepest descent (within 45°),
and is greater than a certain threshold in
magnitude, the surface is convergent at this
point.

This mixed strategy gives good results on coarse
grids, but on finely modeled terrain introduces arti-
facts wherever the steepest descent algorithm is used
on smoothly differing but convergent parts of the
surface.

Figure 8. Shaded image representing catchment area

over analytic surface with two hills and saddle. Calculation

is using mew divergent flow algorithm with parameter
p=11
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Figure 9. Shaded image representing catchment area over
analytic surface with two hills and saddle. Calculation is
using traditional steepest descent algorithm. Note serious
discontinuities on most slopes, and dominance of strictly
east—west line.

APPLICATION

[ have applied the algorithm to other surfaces to
verify its performance. The elevation contours for a
surface with two peaks of unequal height and a saddle
can be seen in Figure 6, Extending not exactly
cast-west are two gullies which will take most of
the drainage. Figure 7 shows the drainage contours
for the surface. The same information is conveyed
in image form in Figure 8. The catchment area

(¢ ¢ N “ v~ ’: ; S

Iy S
Figure 10. Elevation contours for area around Bullock
Creek in North Queensland. Grid spacing is 0.0025°, and
elevations range from 400 to 850 m. Contours are at 20m
intervals,
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increases steeply down the two gullies, and jg
uniform on the other hill slopes. In Figure 9, the
corresponding image that results from applying the
steepest descent algorithm can be compared. Here,
the highest drainage is strictly east-west, in contrast
to the actual topography. On the divergent slopes,
there are serious artifacts representing enormoug
discontinuities in drainage pattern that are most
unrealistic.

If we take a model of natural terrain, we can
compare the algorithms. The elevation contours
(20m interval) calculated from a small grid
(201 x 201 points) at a coarse scale (grid spacing is
approximately 270 m) can be seen in Figure 10. In
Figure 11, the catchment area calculation is shown
with the three methods: steepest descent, the mixed
algorithm, and the divergent flow algorithm. Superfi-
cially, all three are similar, dominated by similar
overall flow patterns, which will be the main feature
of modeling at such a coarse resolution. Differences
are discerned in the catchment area values on the hills
and at the bottom of the river valleys. The steepest
descent algorithm gives well-defined stream lines, but
large areas with low-catchment areas on the hills,
with most of the drainage placed in channels that do
not always match the actual terrain. On the other
hand, the divergent flow algorithm gives a better
representation on the slopes where there should be no
channels. However, it gives diffuse, blurred valley
bottoms in the downstream sections, which may be
realistic for flood conditions, but do not represent
well the normal flow patterns. The mixed algorithm
combines the advantages of both methods in such
coarse models, giving well-defined valley bottoms
as well as unchannelled drainage over divergent
terrain.

CONCLUSION

The adoption of divergent flow in grid-based
drainage analysis gives greatly superior accuracy over
previous work, but at the cost of added compu-
tational time. However, recursive processing gives
some compensating savings on large matrices, with
execution times proportional to the number of
points rather than a power of 1.5-2 of the number
of points that existing algorithms incur. Compared
with steepest descent implemented recursively, diver-
gent flow calculation increases execution time by a
factor of six or seven. Depression fillings remains
slow, proportional to the square of the number of
points,

The steepest descent algorithm will continue to be
used in simple topographic analysis for identifying
streamlines and watersheds. However, divergent flow
method should give enough accuracy for hydrological
application, where it is simpler and more rapid than
conventional methods if the elevation model is a
regular grid.
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Figure 11. Catchment areas calculated with three algorithms over Bullock Creek elevation m
steepest descent method, (B) uses mixed algorithm, with divergent flow in most places, but s
where surface is convergent, (C) uses divergent flow method with ) = L1
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