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Abstract 

Topographic depressions in digital elevation models (DEMs) are frequently a 

combination of artefacts and actual features. It is common practice to remove all digital 

depressions, from DEMs that are used in hydro-geomorphic applications. This practice is 

inappropriate because actual depressions affect many of the environmental phenomena at 

study. Nonetheless, indiscriminate depression removal persists because of an inability to 

distinguish artefacts from actual depressions.  

Five potential approaches for distinguishing artefacts from actual depressions in 

DEMs are described in this paper: ground inspection, examining the source data, 

classification approaches, knowledge-based approaches, and modelling approaches. Of 

the five methods, ground inspection was the only approach that actually confirms the 

existence of digital depressions. The other four methods that were identified operate by 

establishing justification for why a digital depression is likely to be an artefact or actual 

depression. A comparison of the depression validation approaches for a small sub-

catchment on the Canadian Shield showed that the modelling approach performed the 

best. While being highly automated and applicable to all landscape types, this approach 

also explicitly handles DEM uncertainty. By applying the Monte Carlo method, this 

approach estimates the likelihood of a digital depression actually occurring in the 

landscape given the degree of uncertainty in local topography. After artefact and actual 

depressions are identified, it is then possible to remove the artefacts and to preserve the 

real features for incorporation into modelling. 

Keywords: topographic depressions; digital elevation models; digital terrain analysis; 

topography. 



 2

Introduction 

DEMs have become standard data for hydro-geomorphic analyses (Moore et al., 1991) 

and many of the techniques for processing these data are now ubiquitous in geographic 

information systems (GISs). Topographic depressions, also called pits or sinks, are 

commonly removed from DEMs prior to use in many hydro-geomorphic applications 

(Burrough and McDonnell 1998, Wilson and Gallant 2000). This practice reflects the fact 

that digital depressions are often artefacts that have the undesirable effect of altering and 

truncating simulated overland flow networks (Tarboton et al., 1991; Tribe, 1992; 

McCormack et al., 1993). Artefact depressions occur because of data errors, 

interpolation, and the limited horizontal and vertical resolution of DEMs (Qian et al., 

1990; Tribe, 1992; Martz and Garbrecht, 1998; 1999; Rieger, 1998; Florinsky, 2002). 

Grid-based DEMs (i.e. elevation matrices), the most common terrain model format 

(Wise, 2000), frequently contain artefact depressions because of their inability to 

explicitly represent ridges and streamlines (Mark, 1988). 

The practice of removing every depression from DEMs has been justified in the 

past in three main ways: 1) the scale and accuracy of a DEM is inadequate to represent 

actual depressions, which are generally small landforms, 2) depressions rarely occur in 

natural landscapes and artefact digital depressions are abundant, and 3) actual depressions 

have minimal impact on hydro-geomorphic processes since they either fill with water and 

overflow or find sub-surface pathways that are closely approximated by surface 

topography. These three justifications for removing all digital depressions are, however, 

largely no longer valid. 
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Early work in digital terrain modelling focused on environments where real 

depressions of a comparable scale to the resolution of available DEMs were rare, and 

therefore, it was justified to consider all digital depressions to be artefacts (e.g., 

O’Callaghan and Mark, 1984; Band, 1986; Jenson and Dominque, 1988; Hutchinson, 

1989; Fairfield and Leymarie, 1991). However, modern DEMs that are created from 

digital photogrammetry, laser altimetry, and satellite imagery are often capable of 

representing actual depressions in the landscape because of their fine scale and high level 

of accuracy (MacMillan et al., 2003). It is no longer justifiable to assume that all digital 

depressions are artefacts on the basis of DEM quality alone. Actual depressions also 

occur more extensively than has generally been acknowledged in the digital terrain 

analysis literature. Muehrcke and Muehrcke (1998) and Mark (1988) both provide 

descriptions of a variety of landscapes that contain depressions across a range of spatial 

scales. Furthermore, depressions are also important for environmental processes. 

Depressions store water, sediment, and nutrients, enhance water loss to the atmosphere 

and to deep groundwater, and provide critical habitat for plants and animals (Hubbard 

and Linder, 1986; Rosenberry and Winter, 1997; Hayashi and van der Kamp, 2000; 

Antonić et al., 2001). These issues have led some terrain-modelling practitioners to 

question the appropriateness of removing all depressions from DEMs (Martz and deJong, 

1988; Tribe, 1992; MacMillan et al., 1993; McCormack et al., 1993; Burrough and 

McDonnell, 1998; Metcalfe and Buttle, 1999).  

Artefact and actual depressions must be distinguished in DEMs. This problem has 

received little attention in the literature even though fine-resolution DEMs are 

increasingly widespread in use (Lane and Chandler, 2003; Lindsay and Creed, in press a) 
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and DEM analyses include low-relief landscapes where depressions are abundant (e.g., 

Martz and deJong, 1988; Liang and Mackay, 2000; Creed et al., 2003). This paper 

evaluates several potential approaches to distinguishing actual and artefact depressions 

including ground inspection, examining the source data, classification approaches, 

knowledge-based approaches, and modelling approaches. 

 

Ground Inspection 

Digital depressions can be errors of commission (i.e., they exist in the DEM but should 

not). The only way that digital depressions can be confirmed to be actual features in the 

landscape is through ground inspection. This process involves visiting each depression 

that occurs in the DEM and recording a Boolean ‘exists’ or ‘does not exist’ value and 

possibly mapping the boundaries of the existing features. The global positioning system 

(GPS) is an invaluable tool for locating and mapping depressions. For larger depressions 

(i.e., > 100 m in diameter), aerial photographs and published topographic and 

hydrographic maps are useful for depression validation. Published land-use/land-cover 

maps are also useful for depression validation because several types of larger depressions 

related to anthropogenic activities (e.g. open-pit mines, quarries, and wetlands) are often 

mapped. Depressions can also be errors of omission (i.e., they do not exist in the DEM 

but should). One advantage to ground inspection of depressions is that depending on how 

the field campaign is designed it may be possible to identify both errors of commission 

and omission. While artefact depressions can be repaired by depression removal 

techniques (e.g. Lindsay and Creed, in press b), omitted depressions can only be resolved 

by further data collection and re-generation of the DEM. 
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Ground inspection is the most reliable method for identifying actual depressions. 

However, selection of the ground inspection method to distinguish actual and artefact 

depressions must consider the following constraints: 

 

1. Landscapes may be inaccessible.  

2. The number of depressions to be included in the ground survey may be unreasonable. 

The number of depressions in DEMs increases exponentially at smaller scales 

(MacMillan et al., 2003; Lindsay and Creed, in press a) requiring evermore 

depressions to be inspected on the ground.  

3. The critical threshold in area for defining a depression must be considered. Often, this 

critical threshold is determined by the resolution of the DEM grid; depressions that 

are smaller than the DEM resolution cannot be represented in the elevation matrix. In 

fact, depressions that are a single grid cell in size are unlikely to be represented 

accurately in the DEM and several grid cells may be needed to represent a depression. 

Ground inspection must screen depressions and include only those that could possibly 

be represented in the DEM. A digital terrain analyst must be aware of these 

limitations in representing depressions in a DEM.  

4. The challenges in identifying a depression must be considered. For example, it can be 

difficult to find depressions, particularly in forested regions or areas with extensive 

wetlands (Ludden et al., 1983). Conducting ‘depression hunting’ shortly after a heavy 

rainfall can lessen these problems because topographic depressions may be at least 

partly full.  
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5. The challenges in quantifying the size and shape of a depression must be considered. 

It may be difficult to determine the size and shape of depressions, particularly shallow 

depressions (which may be mistaken for a flat) and large depressions. 

6. Ground inspection demands significant resources.  

 

Ultimately, the success of a ground inspection campaign will be influenced by the 

availability of time, equipment for geo-locating and measuring the dimensions of 

depressions, and the familiarity of the personnel with the landscape. 

 

Examination of the Source Data 

When ground inspection is impossible or infeasible, an alternative to distinguishing 

actual depressions from artefacts in a DEM is examination of the source data from which 

the DEM was generated. There is potential for identification of both errors of commission 

and omission when the source data are available. If a depression does not exist in the 

source data but does exist in the DEM, it is likely to be an artefact resulting from error 

associated with the process of interpolating the data onto a regular grid. Similarly, if a 

depression exists in the source data but not in the DEM this reflects an inadequacy of the 

elevation matrix. 

Types of source data for grid-based DEMs include: 1) contours, 2) elevation 

points (i.e., spot heights), and 3) a combination of contour data and spot heights. Digital 

contour data are common data sources for DEMs (Wise, 1998; 2000) because of the 

availability of published topographic maps. Public or government issued DEMs are 

generally derived from contour data. In contour maps, depressions are represented as 
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closed contours that are at least partly surrounded by contours at a higher elevation and 

may contain contours of lower elevation. If the contour data contains a depression then 

there is justification for the feature in the DEM; there is no “proof” of a depression 

existing in the landscape because contour data invariably contain errors. If a depression 

occurs in a DEM and not in the contour data then there is no justification for the feature 

in the DEM and it is safe to assume that it is spurious. Therefore, examination of source 

data identifies ‘justified’ and ‘unjustified’ digital depressions. 

Identifying depressions in a contour map is an easy task for a person with basic 

topographic map reading skills. Finding depression contours on paper maps is usually 

made easier by the cartographic convention of labeling depressions with hachure marks. 

Nevertheless, for large contour coverages containing many depressions, automated 

methods are preferable. Considerable effort is needed to automate the process of 

identifying depression contours because depressions occur in a variety of topographic 

settings and because digital contours do not usually possess hachures. However, once 

depression contours are identified they can be overlaid on a DEM and justified and 

unjustified depressions may be distinguished. 

Unfortunately, contour maps often do not contain depressions even when these 

features actually exist, i.e., errors of omission are common. In a comparison of data 

sources, Applegate (2003) found that even high-resolution contours (1:100 scale, 10 ft 

contour interval) did not adequately represent the number, density, and size of 

depressions in a site in Mt. Airy Forest, Ohio. None of the depressions in the study (25 - 

65 m in diameter and 3 - 4 m in depth) were represented in the contour maps as closed 

contours, although some were associated with contour crenulations on steeper slopes 
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(Applegate, 2003). Depressions are often absent from contour coverages because the 

depth of depressions is often less than the contour interval of even detailed topographic 

maps. Also, there is a cartographic rule that depressions are rare. Thus, when two equally 

valid contour coverages can be fitted to data, one with and one without depressions, the 

coverage without depressions is considered to be more plausible (Figure 1). 

Spot heights can be derived from photogrammetric and remotely sensed data 

sources, which are becoming increasingly common in digital terrain analysis. 

Depressions are impossible to identify in spot height maps because spot heights alone 

cannot define a surface. It is possible however to identify spot heights that are lower than 

all points in their local neighborhood by fitting a triangular irregular network (TIN) to the 

data using Delaunay triangulation (Watson and Philip, 1984). Tucker et al. (2001) 

describe an algorithm for identifying depressions in TINs that may be of use for the 

depression validation problem. Of course, there is always potential that drainage is along 

flow paths that are obscured by the TIN configuration. Therefore, although examining the 

source data can build evidence to justify why a depression should or should not be 

present in a DEM, it is not as conclusive as ground inspection and is limited by data 

availability, structure, and quality. 

 

Classification Approaches 

Source data are not always available to the digital terrain analyst. Consequently, it is 

necessary to have alternatives for depression validation that only rely on the interpolated 

DEM. One such approach to the problem of depression validation is to use a classifier 

such as discriminant analysis or logistic regression. A small test area containing 
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depressions could be used as a training set to develop a classification model to 

discriminate actual from artefact depressions. Thus, ground inspection is needed to 

classify all digital depressions in the test area of the DEM as either actual or artefact. The 

classification model can then be extrapolated to the entire DEM area. The multivariate 

space for the classification is defined by measurable attributes of digital depressions. For 

instance, classification could be based on the area, depth, volume, and location within the 

landscape of digital depressions.  

Instead of conventional linear classifiers, an artificial neural network (ANN) 

(Lippmann, 1987; Hush and Horne, 1993) could conceivably be used to classify 

depressions as actual or artefact. However, the weights in an ANN are not easily 

interpreted in terms of their physical meaning. Furthermore, optimizing ANNs can be 

subjective and over-optimization (i.e. “over-training”) can lead to problems with 

generalization (Hush and Horne, 1993). Nevertheless, these models have been 

successfully applied to many classification problems in engineering and the sciences 

because of their ability to handle non-linear, multivariate problems (Hush and Horne, 

1993). ANN classifiers are also relatively insensitive to noisy data and robust against 

multicollinearity, i.e., strong correlation among independent variables that hinders 

statistical modelling. These characteristics of ANNs could be advantageous for 

depression validation. 

The linear and ANN classification approaches to depression validation only work, 

1) if there is a significant difference between some attribute, or combination of attributes, 

of actual and artefact digital depressions, and 2) if this difference is robust across a range 

of spatial scales. These approaches are highly dependent on data structure and quality, 
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both of which affect the representation of actual depressions in the DEM. Thus, it would 

not be prudent to use a model developed using one DEM on a second DEM of the same 

site but different source data or scale. Similarly, linear and ANN classification 

approaches to depression validation are also site-specific and may not be generalizable to 

other regions of interest. This is because of the highly variable morphology of natural 

depressions. For example, there is no reason to expect that sinkhole depressions in karst 

terrain will have similar morphology to prairie potholes because they result from different 

geomorphic processes. It is also necessary to ensure that the test area for which the 

classification model is developed is representative of the DEM as a whole. Therefore, the 

area must be relatively homogenous in terms of factors affecting depression formation 

and representation. Clearly, these limitations place severe constraints on the utility of 

linear and ANN classification models for discriminating actual and artefact digital 

depressions. 

 

Knowledge-Based Approaches 

Knowledge-based approaches to depression validation involve heuristic rules and expert 

opinion. For example, MacMillan et al. (1993) selectively removed depressions with 

minor extent or volume from their DEM. This takes advantage of the fact that several 

grid cells are needed to represent topographic variation accurately, and therefore, smaller 

digital depressions are likely to arise from error and other inadequacies of the DEM. 

Clearly a size threshold is needed to decide which features are too small or of minor 

volume, and this threshold is likely to be based on expert knowledge. Also, caution is 

needed if an area and/or volume threshold is used for depression validation since size is 
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not always a good indicator of how justified a digital depression may be. For example, 

Lindsay and Creed (in press a) showed that at flow path bottlenecks in DEMs (i.e., areas 

of high topographic convergence) small elevation errors could result in large, multi-celled 

depressions upslope of the constriction. 

The MacMillan et al. (1993) example is a heuristic rule based on a characteristic 

of data. It is also possible to develop heuristic rules for depression validation based on 

landscape characteristics. Depressions are generally ephemeral landforms; sediment is 

continually deposited in depression bottoms from higher elevations while erosion cuts 

outlets into their sides. The net effect is to lessen a depression’s volume and over time 

eliminate it entirely. As such, the occurrence of depressions in a landscape usually 

indicates a disturbance by a recent geologic event (Muehrcke and Muehrcke, 1998). 

Knowledge-based approaches may take advantage of these geomorphic factors by 

considering how likely depressions are to occur given the local physiography (e.g. is the 

site one of the landscape types in which depressions occur frequently?), geologic history 

(e.g. has the site been recently disturbed by a geologic event?), or position within the 

landscape (e.g. where are individual depression located relative to the ridge and valley 

and how likely are they to occur in these locations?). If multiple heuristic rules were 

used, a multi-criteria evaluation could be developed based on a weighted combination of 

the spatial and aspatial data (Malczewski, 1999).  

The difficulty with all knowledge-based approaches is that weighting systems 

need to be developed and expert opinions are often unavailable. For instance, how more 

or less likely is an actual depression to occur in a karst environment than in a recently 

glaciated prairie region? How more or less likely are actual depressions to occur along 
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flat valley bottoms compared with steep mid-slope positions? Some such questions may 

be answered through extensive field observations of depressions, although their answers 

may apply only to specific landscapes. Therefore, knowledge-based approaches to 

depression validation that use landscape characteristics suffer from the same problems as 

the classification approaches—they are dependent on the source and scale of data and on 

the specificity of landscapes. 

 

Modelling Approaches 

While the depression validation methods described in the preceding sections are affected 

by error in the DEM, a modelling approach based on the Monte Carlo method explicitly 

recognizes that elevation matrices contain a degree of uncertainty. Depressions are 

unlikely to exist in the landscape if the topographic variation (i.e., the signal) is less than 

the uncertainty in elevations (i.e., the noise). Lane et al. (2004) and Lindsay and Creed 

(in press a) both used a similar stochastic simulation to quantify the sensitivity of digital 

landscapes to artefact depressions resulting from random elevation error. A related 

approach is suggested for the purpose of validation of depressions (Figure 2).  

Based on the Monte Carlo procedure (Burrough and McDonnell, 1998), each grid 

cell is assumed to possess a Gaussian error probability distribution function (PDF) with a 

mean of zero and a specified standard deviation and degree of spatial autocorrelation. A 

sample is then randomly drawn from the Gaussian error PDF of each grid cell and added 

to the DEM. Depressions in the error-added DEM are then filled and grid cells that are 

modified by the depression filling process are flagged. This procedure is repeated 

numerous times, adding different error terms at each realization. Dividing the number of 
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times that each grid cell is flagged during the simulation by the number of realizations 

yields the probability that a cell belongs to a depression (pdep) given the distribution of 

elevation errors. Digital depressions that have topographic signals that are swamped by 

uncertainty in the DEM will be flagged infrequently during the simulation and therefore 

will have low pdep values.  

In most cases, depression validation is only concerned with whether or not 

depressions exist (i.e., a Boolean value) and not with their shape. Therefore, the grid cell 

with the maximum pdep within each depression could be assigned to the feature (Figure 

2). This is the grid cell with the strongest topographic signal contained within the 

depression. A pdep threshold can then be used to determine which depressions are 

unjustified and later these depressions can be removed from the DEM.  

This modelling approach is an attractive technique for depression validation when 

extensive ground inspection is impossible; it is automated, applicable in all landscapes, 

and explicitly handles uncertainty in topography. Also, the stochastic simulation method 

does not require much additional data (e.g. the source data) or knowledge of 

physiographic setting and glacial history, etc. Nonetheless, subjectivity may be involved 

in estimating error PDFs, the degree spatial autocorrelation, and the pdep threshold. Kelly 

(2004) found that pdep correlates strongly with actual depressions in the field and can 

therefore be used to identify actual depressions in a topographically diverse set of 

landscapes. However, Lindsay and Creed (in press a) found that there are ‘topographic 

hotspots’ (e.g., extremely convergent topography) that contain high pdep values but are 

artefacts. Therefore, errors of commission can occur since areas of very high pdep that are 

not associated with a depression can be included in simulations. Subsequent analysis, 
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possibly ground inspection, may therefore be necessary to eliminate depressions with 

high pdep values in topographic settings where the presence of an actual depression is 

suspect. 

 

Example 

Several algorithms needed to perform depression validation have been implemented in 

the Terrain Analysis System (TAS), a freely available geographic information system 

(Lindsay, in review). Routines have been programmed into TAS 1) to identify depression 

contours in a coverage of digital contour lines, 2) to measure depression metrics and to 

selectively remove depressions that do not meet a specified size threshold, and 3) to 

perform a Monte Carlo based modelling approach for depression validation. 

The methods for depression validation that rely solely on the DEM have been 

applied to a 2.5 m grid resolution light detection and ranging (LiDAR) DEM (Figure 3). 

This DEM is of a 3.2 ha sub-catchment in the Turkey Lakes Watershed (TLW). TLW is 

an experimental watershed located within the Abitibi Uplands of the Canadian Shield, 

approximately 60 km north of Sault Ste. Marie, Canada. The LiDAR DEM was based on 

the last return of the laser altimeter, and therefore, the surface corresponds to ground 

terrain rather than canopy elevations. The source data from which the DEM was 

generated were unavailable. 

 The DEM contained 24 depressions. Ground inspection revealed that 15 of these 

digital depressions were actual features while the remaining nine were artefacts (Figure 

3). Actual depressions occurred in all slope positions, with the most extensive 

depressions occurring within a wetland complex in the catchment bottomland. Artefact 
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depressions also occurred in a variety of slope positions. Compared to the wide range in 

the size of actual features, most artefact depressions were a couple of grid cells in extent 

or less.  

Four depression validation models were compared in terms of their ability to 

discriminate actual and artefact depressions. These models included: 

 

1. Classification based on discriminant analysis (DA), 

2. A simple heuristic rule based on removing depressions of minor extent (HR1), 

3. A complex heuristic rule based on removing depressions of minor extent and depth 

(HR2), and, 

4. Stochastic simulation modelling (SSM). 

 

DA, the classification model, was created by importing the automatically derived 

depression metrics into a commercial statistical analysis package. The independent 

variables for this model included the following depression metrics: number of grid cells, 

maximum depth, average depth, volume, and elevation above sub-catchment outlet. The 

variables were entered into the model using a stepwise procedure with an F-to-enter = 1; 

once a variable was entered into the model it could not be removed. The final 

classification model was found to be statistically significant [F(2, 21) = 3.88 p < 0.037] 

and included only two the depression metrics: maximum depth and elevation above sub-

catchment outlet. 

The two heuristic models (HR1 and HR2) were both based on characteristics of 

data, and were similar in approach to the depression validation method described by 
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MacMillan et al. (1993). That is, these models removed depressions that were deemed to 

be of minor dimensions compared to the limitations of the elevation data to accurately 

represent landforms. HR1 filled all depressions that consisted of less than two grid cells. 

The more complex HR2 filled all depressions that consisted of less than two grid cells 

and had a maximum depth of less than 0.30 m. This threshold in depth reflects an 

estimate of the vertical accuracy of the DEM. Thus, the assumption is that it is reasonable 

to remove depressions that have maximum depths less than the root-mean-square error of 

the DEM. Both of the heuristic models were implemented using TAS’s selective 

depression removal capabilities (Figure 4). Multiple filters can be applied to fill 

depressions based on thresholds in any combination of depression extent (i.e., number of 

cells or area), maximum depth, average depth, volume, and/or elevation. Depression 

metrics are measured automatically from a specified DEM, and the user is able to review 

the fill status for individual depressions before applying the filter. 

SSM followed the procedure for depression validation outlined in Figure 2. The 

error distribution used in the simulation had a mean of zero and a standard deviation of 

0.3 m, reflecting the DEM accuracy. Error fields were created to exhibit a small degree of 

autocorrelation. The simulation ended after 304 realizations, after which point the 

differences between consecutive realizations were deemed to be minor. A pdep threshold 

of 0.7 was used to discriminate artefact (pdep < 0.7) and actual (pdep ≥ 0.7) depressions for 

this demonstration. As such, depressions were accepted if they demonstrated a 0.7 

probability of existing, given the uncertainty in the DEM. This threshold was found to be 

suited to these data, and may not be appropriate to other data sets. Many of the artefact 

depression with lower pdep values likely occur on flat sites. 
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All of the facilities needed to perform the operations described in Figure 2 have 

been implemented in TAS. The Monte Carlo method component, i.e. the steps for 

determining the spatial pattern of pdep, can be performed using the ‘Depression Shape 

Analysis’ sub-program. The maximum pdep can then be assigned to individual 

depressions by using the ‘Descriptive Statistics’ sub-program and selective filling based 

on pdep can be achieved using TAS’s raster calculator. 

Table 1 summarizes the results of the four depression validation methods, 

compared against the ground inspection findings. Although the overall success in 

distinguishing actual and artefact depressions did not vary substantially among the four 

models, SSM did perform slightly better with a 75% classification success. SSM 

performed relatively well for identifying both artefact and actual depressions and 

incorrectly classified relatively few features (Table 1). DA performed well at identifying 

actual depressions, but was far less successful in recognizing artefact depressions. 

Similarly, HR1 successfully identified each of the artefact depressions in the DEM; 

however, it was liberal in its classification of artefact depressions, resulting in far fewer 

‘actual’ depressions than were observed by ground inspection. While HR2 was found to 

be the worst overall model, much of this error was the result of removing actual 

depressions. The poor performance of both HR1 and HR2 largely resulted because 

several actual depressions consisting of one or two grid cells (i.e., ≤ 5 m) did occur in the 

sub-catchment. This is not a problem that is likely to be resolved with finer DEM 

resolutions since the number of actual depressions increases exponentially with finer grid 

spacings.  



 18

Many of the errors made by the DA model were associated with smaller 

depressions in upland positions (Figure 5). The errors in classification made by HR1 and 

HR2 were dispersed throughout the sub-catchment in association with the distribution of 

small depressions (i.e., ≤ 2 grid cells). The classification errors made by SSM were 

appeared to be more strongly associated with smaller depressions in higher slope 

positions (Figure 5). Thus, each of the depression validation approaches had difficulties 

correctly classifying small depressions, while most of the approaches were successful in 

classifying more extensive depressions. 

 

Summary and Conclusions 

The importance of depressions as controls on environmental processes within certain 

landscapes is widely recognized. Despite this awareness, it is common practice in terrain 

analysis to remove all depressions in DEMs prior to conducting hydro-geomorphic 

analyses involving flow phenomena at or near the Earth’s surface. This practice stems 

from historical assumptions that are largely invalid given the quality of modern elevation 

data and current understanding. Regardless of their resolution and accuracy, however, 

grid-based DEMs will always contain numerous artefact depressions that should be 

removed from the data. Consequently, it is important that researchers have the ability to 

distinguish between actual and artefact depressions in their DEMs and to selectively 

remove the artefacts. This is a problem that has, until now, received little attention in the 

literature. Five approaches to digital depression validation were proposed in this paper: 

ground inspection, examination of the source data, classification approaches, knowledge-

based approaches, and a Monte Carlo based modelling approach. None of these 



 19

approaches to depression validation are perfect; each has various advantages and 

disadvantages (Table 2).  

The aim of this paper was to increase awareness of the problems associated with 

digital depressions in DEMs, to present a critical analysis of the methods for 

discriminating between actual (to be preserved) and artefact (to be removed) digital 

depressions, and to stimulate research which could eventually lead to a more ideal 

method for discriminating between actual and artefact digital depressions. The following 

major conclusions are drawn: 

 

1. Ground inspection is the preferred method of depression validation whenever possible 

because it is the only method that truly confirms the occurrence of depressions in the 

landscape. However, when ground inspection is impossible or infeasible, alternative 

means of discriminating actual and artefact depressions are needed, i.e. it is often 

unacceptable simply to remove all depressions indiscriminately from DEMs.  

 

2. The automated methods provide evidence that the occurrence of digital depressions in 

DEMs are justified or unjustified. Of the four methods described in this paper, the 

Monte Carlo modelling approach is the most promising. This method is relatively 

insensitive to the source or scale of the data used to generate a DEM and is applicable 

in all landscapes. The modelling approach also performed slightly better than the 

other depression validation approaches in an example application. Combining the 

Monte Carlo based modelling approach with restricted ground inspection could 

provide a method to objectify the selection of error PDF characteristics and the pdep 
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threshold and to verify depressions with high pdep in topographic settings where actual 

depressions are unlikely.  
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Table 1.  Classification results for four depression validation approaches applied to a 

small sub-catchment on the Canadian Shield. Model names are explained in text. 

 
Model 
Name 

Correctly 
Removed 

Incorrectly 
Removed 

Correctly 
Preserved 

Incorrectly 
Preserved 

Total 
Correctly 
Classified 

Total 
Incorrectly 
Classified 

DA 5 3 12 4 17 7 
HR1 9 7 8 0 17 7 
HR2 7 6 9 2 16 8 
SSM 7 4 11 2 18 6 
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Table 2. Advantages and disadvantages of approaches to depression validation. 

Depression 
validation Method 

Advantages Disadvantages 

Ground inspection 
 

Most accurate; 
Identifies errors of commission 
and omission. 
 

Manual;  
Labour and resource 
intensive. 

Examination of 
source data 
 
 

Automated;  
Identifies errors of commission 
and omission. 

Dependent on the availability 
of source data; 
Very sensitive to the quality, 
structure, and scale of the 
source data; 
Contour data subject to biases 
introduced by map drawing. 
 

Classification 
approaches 

Automated; 
Requires DEM only. 

Model limited to specified 
data source and scale, leading 
to problems generalizing; 
Requires a significant 
difference in the attributes of 
actual and artefact depression 
attributes; 
Can be scale dependent; 
Requires some ground 
inspection; 
Cannot identify errors of 
omission. 
 

Knowledge-based 
approaches 
 

Automated; 
Applies physically meaningful 
heuristic rules; 
Does not involve ground 
inspection. 
 

Expert opinion needed to 
develop weighting scheme is 
often unavailable; 
Weighting scheme may be 
sensitive to landscape type; 
Cannot identify errors of 
omission. 
 

Monte Carlo based 
approach 

Automated; 
Requires little additional data 
and information;  
Applicable in all landscapes; 
Accounts for uncertainty in 
topography. 

Need to estimate error 
distribution and spatial 
correlation (subjective if 
ground data are unavailable); 
Need to estimate threshold 
pdep value; 
May require some ground 
inspection to identify errors of 
commission. 
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Figure Captions 

 

Figure 1. Two equally valid contour coverages, one contains depression contours (a) and 

one does not (b). The contour coverage without depressions represents the typical 

cartographic convention for contouring. 

 

Figure 2. Monte Carlo procedure for artefact depression identification and removal. pdep 

is the probability of depression occurrence. 

 

Figure 3. Results of a ground inspection campaign for depressions in a small sub-

catchment on the Canadian Shield. 

 

Figure 4. The graphical user interface for a program for measuring depression metrics 

and selectively filling depressions. 

 

Figure 5. Comparison of four depression validation models applied to catchment in 

Figure 3. 
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