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Figure 22.18

Modification of ocular dominance stripes after monocular deprivation. Tangential sections through layer IV of macaque
monkey striate cortex illuminated to show the distribution of radioactive LGN terminals serving one eye. (a) A normal
monkey. (b) A monkey that had been monocularly deprived for 22 months, starting at 2 weeks of age. The nondeprived
eye had been injected, revealing expanded ocular dominance columns in layer IV, (Source: Wiesel, 1982, p. 585.)
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Figure 20.17

Self-portraits during recovery from a stroke that caused a neglect syndrome. Two months after
suffering a stroke affecting parietal cortex on the right side, the artist made the upper left portrait.
There is virtually no left side to the face in the painting. Three and a half months after the stroke
(upper right), there is some detail on the left side but not nearly as much as on the right side. At
6 months {lower left) and 9 months (lower right) after the stroke, there is increasing treatment of
the left side of the painting. (Source: Posner and Raichle, 1994, p. 152.)

E20M Lippircatt Willams & Wilkins



Do individuals with an impaired sense have
superior abilities in other modalities?

From Scent of a Woman (1992)




From Bavelier et al. (2000) J. Neurosci. 20: RC93
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Summary

Congenitally Deaf Cats have visual abilities

similar to Hearing Cats on the following
tasks:

Vernier Acuity

Grating Acuity

Orientation Discrimination
Direction of Motion Discrimination

Congenitally Deaf Cats have visual abilities

superior to Hearing Cats on the following
tasks:

e Detection of Movement
e Visual Detection in the Peripheral Field




Where is cross-modal reorganization underlying
enhanced visual functions occurring in cortex?




Cat Auditory Cortex




Hypothesis

Congenital deafness induces a reverse
hierarchical gradient in the level of cross-
modal plasticity, whereby higher order
auditory areas show more extensive cross
modal reorganization than primary/core
areas.
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What are the behavioural contributions
of the reorganized cortex?



Types of Neural Deactivation

Permanent

Physical ablation
Chemical (neurotoxins)
Electrolytic

Reversible
Chemical (Lidocaine, Muscimol, GABA)
Thermal — Cooling
(Thermoelectric-Peltier, Cryoloop)

From Lomber (1999) J. Neurosci, Meth. 86: 109-117.




Advantages of Reversible
Cooling Deactivation

Each animal serves as its own control.

Double dissociations can be performed in the same
animal.

Deactivations are highly localized and can be limited to
superficial layers alone or induced through the full
thickness of cortex.

Deactivations can be induced, held constant for long
periods (>1hr), and reversed within minutes;

No deficit attenuation.

Deactivations alter neither the anatomical structure nor
neuronal receptive field properties.

Animals can be trained on modified or new tasks as the
Investigations proceed and new data are accumulated
because the brain is always Iintact.

From Lomber (1999) J. Neurosci. Meth. 86: 109-117.
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Demonstrating

Reversible Deactivation

Two Questions:
1. How do you know what you deactivated?
2. Can you demonstrate a lack of damage?

Electrophysiologically
hermodynamically
Metabolically
Anatomically




Electrophysiologically
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Thermodynamically
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Metabolically:

Radiolabelled 2-deoxyglucose

Administer 2DG In the awake animal, just

prior to sacrifice, while one or more loops
are being cooled.

Process tissue for autoradiography




2DG Uptake During Cooling of
Right MS Sulcus




Anatomically

Neurobiology
of Disease
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Sound Localization




Hypothesis

Cortical areas that have been physiologically
reorganized in response to deafness will be
involved in behaviors that are similar to
those of hearing animals, but are mediated
by the replacement modality (vision).
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Visual Stimulus
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Next: What happens to FAES in deaf cats following

introduction of a cochlear prosthetic?



Hypothesis

When other modalities “invade” auditory
cortex following deafness, the “invasion”
can be reversed (both physiologically and
behaviourally) following cochlear implant.




Experimental Approach

White cats born

Deafness confirmed with ABR'’s at 1M
Testing of visual functions

Receive bilateral cochlear implants at (4M)
Trained on a battery of acoustic tasks
Recelve cooling loops at ~ 1.5 years

Dally testing on the learned tasks during
deactivation of individual cortical areas

Acute cortical recordings/ tracer injections
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Summary of Visual and Acoustic
Orienting Deficits

Hearing | Deaf Cat | Deaf Cat
Cat w/CI

Deactivate | Acoustic Acoustic
Deficit Deficit*

Deactivate | Acoustic No Acoustic
Deficit | Orienting | peficit*
Deficits




Conclusions

1) Congenital deafness induces a reverse
hierarchical gradient in the level of cross-modal
plasticity, whereby higher order auditory areas
show more extensive cross modal reorganization
than primary/core areas.

2) Cortical areas that have been physiologically
reorganized in response to deafness are involved
in behaviors that are similar to those of hearing
animals, but are mediated by the replacement
modality (vision).

3) When other modalities “invade” auditory cortex
following deafness, the “invasion” can be stopped
and reversed (both physiologically and
behaviourally) following cochlear implant.




Future Questions to Consider

e How does degree of deafness effect cross-modal
cortical plasticity?

e How does age at implant effect the ability of
cochlear prosthetics to establish acoustic
processing in auditory cortex?

e How rapidly do these cortical changes occur
following the activation of a cochlear prosthetic?

o If use of a cochlear prosthetic is discontinued,
does visual processing re-establish itself?
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For additional information:

steve.lomber@uwo.ca

Cerebral Systems Laboratory
Centre for Brain and Mind
Robarts Research Institute
University of Western Ontario
100 Perth Drive

London, Ontario N6G 5L8




